Asymptotic distribution of functions on compact homogeneous spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-12

AUTHORS

M. Blümlinger, M. Drmota, R. F. Tichy

ABSTRACT

Some distribution properties of continuous functions on compact, connected, homogeneous Riemannian manifolds are investigated. It is proved that almost all functions are uniformly distributed and almost no functions are well distributed. Furthermore similar results for sequences are established.

PAGES

79-93

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01766142

DOI

http://dx.doi.org/10.1007/bf01766142

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001814546


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Abteilung f\u00fcr Technische Mathematik, Technische Universit\u00c4t Wien, Wiedner Hauptstrasse 8\u201310, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Abteilung f\u00fcr Technische Mathematik, Technische Universit\u00c4t Wien, Wiedner Hauptstrasse 8\u201310, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bl\u00fcmlinger", 
        "givenName": "M.", 
        "id": "sg:person.012047631507.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047631507.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Abteilung f\u00fcr Technische Mathematik, Technische Universit\u00c4t Wien, Wiedner Hauptstrasse 8\u201310, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Abteilung f\u00fcr Technische Mathematik, Technische Universit\u00c4t Wien, Wiedner Hauptstrasse 8\u201310, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drmota", 
        "givenName": "M.", 
        "id": "sg:person.011120311545.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011120311545.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Abteilung f\u00fcr Technische Mathematik, Technische Universit\u00c4t Wien, Wiedner Hauptstrasse 8\u201310, A-1040, Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Abteilung f\u00fcr Technische Mathematik, Technische Universit\u00c4t Wien, Wiedner Hauptstrasse 8\u201310, A-1040, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "R. F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-94777-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037407899", 
          "https://doi.org/10.1007/978-3-642-94777-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96208-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000173682", 
          "https://doi.org/10.1007/978-3-642-96208-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01900213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006482515", 
          "https://doi.org/10.1007/bf01900213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01299098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008480862", 
          "https://doi.org/10.1007/bf01299098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1799-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017267575", 
          "https://doi.org/10.1007/978-1-4757-1799-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01299033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005284410", 
          "https://doi.org/10.1007/bf01299033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01299147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045700512", 
          "https://doi.org/10.1007/bf01299147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-99591-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015508220", 
          "https://doi.org/10.1007/978-3-322-99591-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01473886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032395347", 
          "https://doi.org/10.1007/bf01473886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1776-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043154690", 
          "https://doi.org/10.1007/978-1-4757-1776-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-12", 
    "datePublishedReg": "1988-12-01", 
    "description": "Some distribution properties of continuous functions on compact, connected, homogeneous Riemannian manifolds are investigated. It is proved that almost all functions are uniformly distributed and almost no functions are well distributed. Furthermore similar results for sequences are established.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01766142", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136275", 
        "issn": [
          "0373-3114", 
          "1618-1891"
        ], 
        "name": "Annali di Matematica Pura ed Applicata (1923 -)", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "152"
      }
    ], 
    "keywords": [
      "compact homogeneous spaces", 
      "homogeneous Riemannian manifolds", 
      "Riemannian manifold", 
      "homogeneous spaces", 
      "continuous functions", 
      "asymptotic distribution", 
      "distribution properties", 
      "manifold", 
      "function", 
      "space", 
      "similar results", 
      "distribution", 
      "properties", 
      "results", 
      "sequence"
    ], 
    "name": "Asymptotic distribution of functions on compact homogeneous spaces", 
    "pagination": "79-93", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001814546"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01766142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01766142", 
      "https://app.dimensions.ai/details/publication/pub.1001814546"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_191.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01766142"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01766142'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01766142'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01766142'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01766142'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      22 PREDICATES      51 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01766142 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N897da7c986e646999d86dd687d4fce4b
4 schema:citation sg:pub.10.1007/978-1-4757-1776-1
5 sg:pub.10.1007/978-1-4757-1799-0
6 sg:pub.10.1007/978-3-322-99591-9
7 sg:pub.10.1007/978-3-642-94777-3
8 sg:pub.10.1007/978-3-642-96208-0
9 sg:pub.10.1007/bf01299033
10 sg:pub.10.1007/bf01299098
11 sg:pub.10.1007/bf01299147
12 sg:pub.10.1007/bf01473886
13 sg:pub.10.1007/bf01900213
14 schema:datePublished 1988-12
15 schema:datePublishedReg 1988-12-01
16 schema:description Some distribution properties of continuous functions on compact, connected, homogeneous Riemannian manifolds are investigated. It is proved that almost all functions are uniformly distributed and almost no functions are well distributed. Furthermore similar results for sequences are established.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N77489f143cb84d57a0660f2f8944d0b8
21 Nf994f3baac944d21913c078884e0150b
22 sg:journal.1136275
23 schema:keywords Riemannian manifold
24 asymptotic distribution
25 compact homogeneous spaces
26 continuous functions
27 distribution
28 distribution properties
29 function
30 homogeneous Riemannian manifolds
31 homogeneous spaces
32 manifold
33 properties
34 results
35 sequence
36 similar results
37 space
38 schema:name Asymptotic distribution of functions on compact homogeneous spaces
39 schema:pagination 79-93
40 schema:productId N2e175b94ec1d4c0ebc53c645ce05741d
41 Nb9d6ad8f59b347feb026816debc31bfb
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001814546
43 https://doi.org/10.1007/bf01766142
44 schema:sdDatePublished 2021-12-01T19:05
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N7e4efe1874e7436380bcdb72e2efb58b
47 schema:url https://doi.org/10.1007/bf01766142
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N2e175b94ec1d4c0ebc53c645ce05741d schema:name dimensions_id
52 schema:value pub.1001814546
53 rdf:type schema:PropertyValue
54 N37e561823d904a23987d72184f8eb16b rdf:first sg:person.015312676677.43
55 rdf:rest rdf:nil
56 N44794f4b4c7244de98d19ac3732be833 rdf:first sg:person.011120311545.44
57 rdf:rest N37e561823d904a23987d72184f8eb16b
58 N77489f143cb84d57a0660f2f8944d0b8 schema:volumeNumber 152
59 rdf:type schema:PublicationVolume
60 N7e4efe1874e7436380bcdb72e2efb58b schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N897da7c986e646999d86dd687d4fce4b rdf:first sg:person.012047631507.87
63 rdf:rest N44794f4b4c7244de98d19ac3732be833
64 Nb9d6ad8f59b347feb026816debc31bfb schema:name doi
65 schema:value 10.1007/bf01766142
66 rdf:type schema:PropertyValue
67 Nf994f3baac944d21913c078884e0150b schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1136275 schema:issn 0373-3114
76 1618-1891
77 schema:name Annali di Matematica Pura ed Applicata (1923 -)
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.011120311545.44 schema:affiliation grid-institutes:grid.5329.d
81 schema:familyName Drmota
82 schema:givenName M.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011120311545.44
84 rdf:type schema:Person
85 sg:person.012047631507.87 schema:affiliation grid-institutes:grid.5329.d
86 schema:familyName Blümlinger
87 schema:givenName M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047631507.87
89 rdf:type schema:Person
90 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.5329.d
91 schema:familyName Tichy
92 schema:givenName R. F.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4757-1776-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043154690
96 https://doi.org/10.1007/978-1-4757-1776-1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-1-4757-1799-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017267575
99 https://doi.org/10.1007/978-1-4757-1799-0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-322-99591-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015508220
102 https://doi.org/10.1007/978-3-322-99591-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-642-94777-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037407899
105 https://doi.org/10.1007/978-3-642-94777-3
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-642-96208-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000173682
108 https://doi.org/10.1007/978-3-642-96208-0
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01299033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005284410
111 https://doi.org/10.1007/bf01299033
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01299098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008480862
114 https://doi.org/10.1007/bf01299098
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01299147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045700512
117 https://doi.org/10.1007/bf01299147
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01473886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032395347
120 https://doi.org/10.1007/bf01473886
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01900213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006482515
123 https://doi.org/10.1007/bf01900213
124 rdf:type schema:CreativeWork
125 grid-institutes:grid.5329.d schema:alternateName Abteilung für Technische Mathematik, Technische UniversitÄt Wien, Wiedner Hauptstrasse 8–10, A-1040, Wien, Austria
126 schema:name Abteilung für Technische Mathematik, Technische UniversitÄt Wien, Wiedner Hauptstrasse 8–10, A-1040, Wien, Austria
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...