Semantic preserving translations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-06

AUTHORS

David B. Benson

ABSTRACT

Let X1, X2 be derivation systems (freex-categories) generated by context free grammars. Let X0 be a translation category withx-functorsfi:X0→Xi,i=1, 2. Let T be an Ω*-theory, a generalization of algebraic theories. LetIi:Xi→T be algebraic interpretations of the derivations systems, giving the semantics of derivation systems. The translation category X0 is shown to preserve the common semantics through the translation if there is a natural transformation from the functorf2ºI2 to the functorf1ºI1. This is used to show that certain elementary conditions on well-behaved generalized2 sequential machine maps (g2sm maps) result in semantics preservation by the g2sm maps. More... »

PAGES

105-126

References to SciGraph publications

  • 1968-06. Semantics of context-free languages in MATHEMATICAL SYSTEMS THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01762181

    DOI

    http://dx.doi.org/10.1007/bf01762181

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026577561


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Computer Science Department, Washington State University, 99163, Pullman, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benson", 
            "givenName": "David B.", 
            "id": "sg:person.015006706745.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006706745.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.50.5.869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009050599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(68)90178-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010117340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/365153.365162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012251278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(69)90072-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012655037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(67)90670-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013901997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0000(67)80022-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016649894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0000(69)80006-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022457087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0000(70)80017-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022950527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0000(69)80018-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023087132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01692511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025480202", 
              "https://doi.org/10.1007/bf01692511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01692511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025480202", 
              "https://doi.org/10.1007/bf01692511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01692511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025480202", 
              "https://doi.org/10.1007/bf01692511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/365170.365202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042223292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(70)90517-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045652180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/366062.366083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047595256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/800169.805430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051481040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/321466.321477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052396935"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1974-06", 
        "datePublishedReg": "1974-06-01", 
        "description": "Let X1, X2 be derivation systems (freex-categories) generated by context free grammars. Let X0 be a translation category withx-functorsfi:X0\u2192Xi,i=1, 2. Let T be an \u03a9*-theory, a generalization of algebraic theories. LetIi:Xi\u2192T be algebraic interpretations of the derivations systems, giving the semantics of derivation systems. The translation category X0 is shown to preserve the common semantics through the translation if there is a natural transformation from the functorf2\u00baI2 to the functorf1\u00baI1. This is used to show that certain elementary conditions on well-behaved generalized2 sequential machine maps (g2sm maps) result in semantics preservation by the g2sm maps.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01762181", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1317508", 
            "issn": [
              "0025-5661"
            ], 
            "name": "Mathematical Systems Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Semantic preserving translations", 
        "pagination": "105-126", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7e9d3f46c61ec37d154f5697aa13ca5adfbf41ee92d699d5487dad8fff4f5675"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01762181"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026577561"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01762181", 
          "https://app.dimensions.ai/details/publication/pub.1026577561"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01762181"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01762181'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01762181'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01762181'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01762181'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01762181 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N711e8a159b824192b7b47d33be3d8b18
    4 schema:citation sg:pub.10.1007/bf01692511
    5 https://doi.org/10.1016/s0019-9958(67)90670-5
    6 https://doi.org/10.1016/s0019-9958(68)90178-2
    7 https://doi.org/10.1016/s0019-9958(69)90072-2
    8 https://doi.org/10.1016/s0019-9958(70)90517-6
    9 https://doi.org/10.1016/s0022-0000(67)80022-9
    10 https://doi.org/10.1016/s0022-0000(69)80006-1
    11 https://doi.org/10.1016/s0022-0000(69)80018-8
    12 https://doi.org/10.1016/s0022-0000(70)80017-4
    13 https://doi.org/10.1073/pnas.50.5.869
    14 https://doi.org/10.1145/321466.321477
    15 https://doi.org/10.1145/365153.365162
    16 https://doi.org/10.1145/365170.365202
    17 https://doi.org/10.1145/366062.366083
    18 https://doi.org/10.1145/800169.805430
    19 schema:datePublished 1974-06
    20 schema:datePublishedReg 1974-06-01
    21 schema:description Let X1, X2 be derivation systems (freex-categories) generated by context free grammars. Let X0 be a translation category withx-functorsfi:X0→Xi,i=1, 2. Let T be an Ω*-theory, a generalization of algebraic theories. LetIi:Xi→T be algebraic interpretations of the derivations systems, giving the semantics of derivation systems. The translation category X0 is shown to preserve the common semantics through the translation if there is a natural transformation from the functorf2ºI2 to the functorf1ºI1. This is used to show that certain elementary conditions on well-behaved generalized2 sequential machine maps (g2sm maps) result in semantics preservation by the g2sm maps.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N2e462232993044cbb086b4830f75692a
    26 Nbd682cda6d2b416594595fc106556061
    27 sg:journal.1317508
    28 schema:name Semantic preserving translations
    29 schema:pagination 105-126
    30 schema:productId N71e216230d9e4707b39bf96e5bcf4510
    31 N8871f8d4c79646deb45cb9eef552ee67
    32 N95b0fb0893b74a79841e34e20f409609
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026577561
    34 https://doi.org/10.1007/bf01762181
    35 schema:sdDatePublished 2019-04-11T09:53
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher Nbac76a0d2fa448e992fa80b45ed07841
    38 schema:url http://link.springer.com/10.1007/BF01762181
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N2e462232993044cbb086b4830f75692a schema:issueNumber 2
    43 rdf:type schema:PublicationIssue
    44 N711e8a159b824192b7b47d33be3d8b18 rdf:first sg:person.015006706745.00
    45 rdf:rest rdf:nil
    46 N71e216230d9e4707b39bf96e5bcf4510 schema:name readcube_id
    47 schema:value 7e9d3f46c61ec37d154f5697aa13ca5adfbf41ee92d699d5487dad8fff4f5675
    48 rdf:type schema:PropertyValue
    49 N8871f8d4c79646deb45cb9eef552ee67 schema:name dimensions_id
    50 schema:value pub.1026577561
    51 rdf:type schema:PropertyValue
    52 N95b0fb0893b74a79841e34e20f409609 schema:name doi
    53 schema:value 10.1007/bf01762181
    54 rdf:type schema:PropertyValue
    55 Nbac76a0d2fa448e992fa80b45ed07841 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Nbd682cda6d2b416594595fc106556061 schema:volumeNumber 8
    58 rdf:type schema:PublicationVolume
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Pure Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1317508 schema:issn 0025-5661
    66 schema:name Mathematical Systems Theory
    67 rdf:type schema:Periodical
    68 sg:person.015006706745.00 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    69 schema:familyName Benson
    70 schema:givenName David B.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006706745.00
    72 rdf:type schema:Person
    73 sg:pub.10.1007/bf01692511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025480202
    74 https://doi.org/10.1007/bf01692511
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/s0019-9958(67)90670-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013901997
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1016/s0019-9958(68)90178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010117340
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/s0019-9958(69)90072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012655037
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/s0019-9958(70)90517-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045652180
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/s0022-0000(67)80022-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016649894
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/s0022-0000(69)80006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022457087
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/s0022-0000(69)80018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023087132
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/s0022-0000(70)80017-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022950527
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1073/pnas.50.5.869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009050599
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1145/321466.321477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052396935
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1145/365153.365162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012251278
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1145/365170.365202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042223292
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1145/366062.366083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047595256
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1145/800169.805430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051481040
    103 rdf:type schema:CreativeWork
    104 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
    105 schema:name Computer Science Department, Washington State University, 99163, Pullman, Washington, USA
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...