A theoretical framework for simulated annealing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

Fabio Romeo, Alberto Sangiovanni-Vincentelli

ABSTRACT

Simulated Annealing has been a very successful general algorithm for the solution of large, complex combinatorial optimization problems. Since its introduction, several applications in different fields of engineering, such as integrated circuit placement, optimal encoding, resource allocation, logic synthesis, have been developed. In parallel, theoretical studies have been focusing on the reasons for the excellent behavior of the algorithm. This paper reviews most of the important results on the theory of Simulated Annealing, placing them in a unified framework. New results are reported as well. More... »

PAGES

302

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01759049

DOI

http://dx.doi.org/10.1007/bf01759049

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022965942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Science, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romeo", 
        "givenName": "Fabio", 
        "id": "sg:person.011447346201.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447346201.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Science, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sangiovanni-Vincentelli", 
        "givenName": "Alberto", 
        "id": "sg:person.010253255177.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253255177.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0269964800000723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005610693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014252772", 
          "https://doi.org/10.1007/bf01759048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014252772", 
          "https://doi.org/10.1007/bf01759048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015993561", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1627-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015993561", 
          "https://doi.org/10.1007/978-1-4613-1627-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1627-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015993561", 
          "https://doi.org/10.1007/978-1-4613-1627-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017033526", 
          "https://doi.org/10.1007/bf01759051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017033526", 
          "https://doi.org/10.1007/bf01759051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022887613", 
          "https://doi.org/10.1007/bf01759050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022887613", 
          "https://doi.org/10.1007/bf01759050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032028100", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5819-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032028100", 
          "https://doi.org/10.1007/978-94-009-5819-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5819-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032028100", 
          "https://doi.org/10.1007/978-94-009-5819-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-32792-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033278098", 
          "https://doi.org/10.1007/0-387-32792-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-32792-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033278098", 
          "https://doi.org/10.1007/0-387-32792-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01784711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034733794", 
          "https://doi.org/10.1007/bf01784711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01784711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034733794", 
          "https://doi.org/10.1007/bf01784711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01007975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037243205", 
          "https://doi.org/10.1007/bf01007975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(88)90024-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039494899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01224127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137441", 
          "https://doi.org/10.1007/bf01224127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01224127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137441", 
          "https://doi.org/10.1007/bf01224127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01582166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532067", 
          "https://doi.org/10.1007/bf01582166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00940812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051937309", 
          "https://doi.org/10.1007/bf00940812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1986.10488128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058285862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/60.3.607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.1351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.1351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcad.1987.1270327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061536668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176996986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.13.2.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1427186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069490168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1985.268600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086169762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccad.1988.122560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086185358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada161598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091742337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada170174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091755994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496248", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-06", 
    "datePublishedReg": "1991-06-01", 
    "description": "Simulated Annealing has been a very successful general algorithm for the solution of large, complex combinatorial optimization problems. Since its introduction, several applications in different fields of engineering, such as integrated circuit placement, optimal encoding, resource allocation, logic synthesis, have been developed. In parallel, theoretical studies have been focusing on the reasons for the excellent behavior of the algorithm. This paper reviews most of the important results on the theory of Simulated Annealing, placing them in a unified framework. New results are reported as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01759049", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047644", 
        "issn": [
          "0178-4617", 
          "1432-0541"
        ], 
        "name": "Algorithmica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A theoretical framework for simulated annealing", 
    "pagination": "302", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d6a6f99d5d9709ec5516045735daca436c2465353790965b7af5ba1ae8e0e07"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01759049"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022965942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01759049", 
      "https://app.dimensions.ai/details/publication/pub.1022965942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89789_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01759049"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01759049'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01759049'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01759049'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01759049'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01759049 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N6afb36aa789a4450ae87ad710fe51b79
4 schema:citation sg:pub.10.1007/0-387-32792-4
5 sg:pub.10.1007/978-1-4613-1627-5
6 sg:pub.10.1007/978-94-009-5819-7
7 sg:pub.10.1007/bf00940812
8 sg:pub.10.1007/bf01007975
9 sg:pub.10.1007/bf01224127
10 sg:pub.10.1007/bf01582166
11 sg:pub.10.1007/bf01759048
12 sg:pub.10.1007/bf01759050
13 sg:pub.10.1007/bf01759051
14 sg:pub.10.1007/bf01784711
15 https://app.dimensions.ai/details/publication/pub.1015993561
16 https://app.dimensions.ai/details/publication/pub.1032028100
17 https://app.dimensions.ai/details/publication/pub.1109496248
18 https://doi.org/10.1002/9780470316726
19 https://doi.org/10.1016/0020-0190(88)90024-5
20 https://doi.org/10.1017/s0269964800000723
21 https://doi.org/10.1063/1.1699114
22 https://doi.org/10.1080/00401706.1986.10488128
23 https://doi.org/10.1093/biomet/57.1.97
24 https://doi.org/10.1093/biomet/60.3.607
25 https://doi.org/10.1103/physreva.37.1351
26 https://doi.org/10.1109/cdc.1985.268600
27 https://doi.org/10.1109/iccad.1988.122560
28 https://doi.org/10.1109/tcad.1987.1270327
29 https://doi.org/10.1109/tpami.1984.4767596
30 https://doi.org/10.1126/science.220.4598.671
31 https://doi.org/10.1214/aop/1176996986
32 https://doi.org/10.1287/moor.13.2.311
33 https://doi.org/10.21236/ada161598
34 https://doi.org/10.21236/ada170174
35 https://doi.org/10.2307/1427186
36 https://doi.org/10.2307/3214097
37 schema:datePublished 1991-06
38 schema:datePublishedReg 1991-06-01
39 schema:description Simulated Annealing has been a very successful general algorithm for the solution of large, complex combinatorial optimization problems. Since its introduction, several applications in different fields of engineering, such as integrated circuit placement, optimal encoding, resource allocation, logic synthesis, have been developed. In parallel, theoretical studies have been focusing on the reasons for the excellent behavior of the algorithm. This paper reviews most of the important results on the theory of Simulated Annealing, placing them in a unified framework. New results are reported as well.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf Ncda219d4662841b1acd9f3bcdbe01941
44 Nd10b8619ab4348e899e9bd078de8df61
45 sg:journal.1047644
46 schema:name A theoretical framework for simulated annealing
47 schema:pagination 302
48 schema:productId N5605b3c644a34579b821843f504db911
49 Nb91b10829d3948e2897451a7a1321078
50 Ne811e53775a4490db3dc94318adc888d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022965942
52 https://doi.org/10.1007/bf01759049
53 schema:sdDatePublished 2019-04-11T09:51
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ned02536850c74b4489b405a1660bea0d
56 schema:url http://link.springer.com/10.1007/BF01759049
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N5605b3c644a34579b821843f504db911 schema:name dimensions_id
61 schema:value pub.1022965942
62 rdf:type schema:PropertyValue
63 N6afb36aa789a4450ae87ad710fe51b79 rdf:first sg:person.011447346201.76
64 rdf:rest N7ac91fd66e66446ca861ec7ed777db97
65 N7ac91fd66e66446ca861ec7ed777db97 rdf:first sg:person.010253255177.83
66 rdf:rest rdf:nil
67 Nb91b10829d3948e2897451a7a1321078 schema:name doi
68 schema:value 10.1007/bf01759049
69 rdf:type schema:PropertyValue
70 Ncda219d4662841b1acd9f3bcdbe01941 schema:volumeNumber 6
71 rdf:type schema:PublicationVolume
72 Nd10b8619ab4348e899e9bd078de8df61 schema:issueNumber 1-6
73 rdf:type schema:PublicationIssue
74 Ne811e53775a4490db3dc94318adc888d schema:name readcube_id
75 schema:value 6d6a6f99d5d9709ec5516045735daca436c2465353790965b7af5ba1ae8e0e07
76 rdf:type schema:PropertyValue
77 Ned02536850c74b4489b405a1660bea0d schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
83 schema:name Numerical and Computational Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1047644 schema:issn 0178-4617
86 1432-0541
87 schema:name Algorithmica
88 rdf:type schema:Periodical
89 sg:person.010253255177.83 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
90 schema:familyName Sangiovanni-Vincentelli
91 schema:givenName Alberto
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253255177.83
93 rdf:type schema:Person
94 sg:person.011447346201.76 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
95 schema:familyName Romeo
96 schema:givenName Fabio
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447346201.76
98 rdf:type schema:Person
99 sg:pub.10.1007/0-387-32792-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033278098
100 https://doi.org/10.1007/0-387-32792-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-1-4613-1627-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015993561
103 https://doi.org/10.1007/978-1-4613-1627-5
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-94-009-5819-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032028100
106 https://doi.org/10.1007/978-94-009-5819-7
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00940812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051937309
109 https://doi.org/10.1007/bf00940812
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01007975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037243205
112 https://doi.org/10.1007/bf01007975
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01224127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049137441
115 https://doi.org/10.1007/bf01224127
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01582166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532067
118 https://doi.org/10.1007/bf01582166
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01759048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014252772
121 https://doi.org/10.1007/bf01759048
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01759050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022887613
124 https://doi.org/10.1007/bf01759050
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01759051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017033526
127 https://doi.org/10.1007/bf01759051
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01784711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034733794
130 https://doi.org/10.1007/bf01784711
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1015993561 schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1032028100 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1109496248 schema:CreativeWork
135 https://doi.org/10.1002/9780470316726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496248
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0020-0190(88)90024-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039494899
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/s0269964800000723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005610693
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/00401706.1986.10488128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058285862
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/biomet/60.3.607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418282
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.37.1351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477085
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/cdc.1985.268600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086169762
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/iccad.1988.122560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086185358
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tcad.1987.1270327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061536668
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/aop/1176996986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405759
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1287/moor.13.2.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723340
164 rdf:type schema:CreativeWork
165 https://doi.org/10.21236/ada161598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091742337
166 rdf:type schema:CreativeWork
167 https://doi.org/10.21236/ada170174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091755994
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2307/1427186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490168
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/3214097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228277
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
174 schema:name Department of Electrical Engineering and Computer Science, University of California, 94720, Berkeley, CA, USA
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...