A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-06

AUTHORS

Motoo Kimura

ABSTRACT

Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution. More... »

PAGES

111-120

References to SciGraph publications

Journal

TITLE

Journal of Molecular Evolution

ISSUE

2

VOLUME

16

Author Affiliations

Related Patents

  • System And Method For Sequence Distance Measure For Phylogenetic Tree Construction
  • Compositions And Methods For Detecting Klebsiella Pneumoniae
  • Classification Of Nucleotide Sequences By Latent Semantic Analysis
  • Method For Producing L-Amino Acid From Seaweed-Derived Biomass
  • Hot Spring Bacterial Strain Bkh1 And Protein Isolated Therefrom, Concrete Compositions, And Uses Thereof
  • Species-Specific, Genus-Specific And Universal Dna Probes And Amplification Primers To Rapidly Detect And Identify Common Bacterial And Fungal Pathogens And Associated Antibiotic Resistance Genes From Clinical Specimens For Diagnosis In Microbiology Laboratories
  • Species-Specific, Genus-Specific And Universal Dna Probes And Amplification Primers To Rapidly Detect And Identify Common Bacterial And Fungal Pathogens And Associated Antibiotic Resistance Genes From Clinical Specimens For Diagnosis In Microbiology Laboratories
  • Highly Conserved Tuf Genes And Their Use To Generate Probes And Primers For Detection Of Coagulase-Negative Staphylococcus
  • Hot Spring Bacterial Strain Bkh1 And Protein Isolated Therefrom, Concrete Compositions, And Uses Thereof
  • Highly Conserved Genes And Their Use To Generate Probes And Primers For Detection Of Microorganisms
  • Probes And Primers For Detection Of Bacterial Pathogens And Antibiotic Resistance Genes
  • Fungi And Products Thereof
  • Methods And Probes For Detecting A Vancomycin Resistance Gene
  • Materials And Methods For The Production Of Green Concrete
  • Method For Sequencing Polynucleotides
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01731581

    DOI

    http://dx.doi.org/10.1007/bf01731581

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023239976

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7463489


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Probability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Genetics", 
              "id": "https://www.grid.ac/institutes/grid.288127.6", 
              "name": [
                "National Institute of Genetics, 411, Mishima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kimura", 
            "givenName": "Motoo", 
            "id": "sg:person.073272306.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/267275a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004682902", 
              "https://doi.org/10.1038/267275a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/267275a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004682902", 
              "https://doi.org/10.1038/267275a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016180325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.77.5.2806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019345179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/7.5.1137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020381664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01653945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024892741", 
              "https://doi.org/10.1007/bf01653945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01653945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024892741", 
              "https://doi.org/10.1007/bf01653945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.71.7.2848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031518483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(78)90040-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042992310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/286222a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043533482", 
              "https://doi.org/10.1038/286222a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(78)90081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044677861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(77)90090-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047798930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1179-98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056630243", 
              "https://doi.org/10.1038/scientificamerican1179-98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.164.3881.788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062497053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.482942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062627482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082017199", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-06", 
        "datePublishedReg": "1980-06-01", 
        "description": "Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or \"transition\" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or \"transversion\" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01731581", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences", 
        "pagination": "111-120", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6eb8680cd143a579e9592eb2fda3579927fd24218ee7fc6b5ecea23719d89b04"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7463489"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0360051"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01731581"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023239976"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01731581", 
          "https://app.dimensions.ai/details/publication/pub.1023239976"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01731581"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01731581 schema:about N20372b53b87a4385811855493ecf2288
    2 N21cf760ca49d455e8aeb43d407623f88
    3 N25d3f5568d484555a5a2fcf9ef07edfb
    4 N6038404ec0cf4afca1ecb11a61d6fe3a
    5 N68df22f2c8054fb6936dcfc3c410a15f
    6 N74770d040a24454c88999585ee822b04
    7 N9607f00e2bd14b508b2bce439afdec89
    8 Na640af2fef114244abff51f393483a61
    9 Nce618317c8244fd18ac8555eeb942e7a
    10 Nd7f95223deab47ee9fefb14f7ae8d70d
    11 Nf9bcfb252cb24eb9aeffe008c1724348
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N8f99bb6434704f9297394a8e09491b41
    15 schema:citation sg:pub.10.1007/bf01653945
    16 sg:pub.10.1007/bf01732067
    17 sg:pub.10.1007/bf01732340
    18 sg:pub.10.1038/217624a0
    19 sg:pub.10.1038/267275a0
    20 sg:pub.10.1038/286222a0
    21 sg:pub.10.1038/scientificamerican1179-98
    22 https://app.dimensions.ai/details/publication/pub.1082017199
    23 https://doi.org/10.1016/0092-8674(77)90090-3
    24 https://doi.org/10.1016/0092-8674(78)90040-5
    25 https://doi.org/10.1016/0092-8674(78)90081-8
    26 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
    27 https://doi.org/10.1073/pnas.71.7.2848
    28 https://doi.org/10.1073/pnas.77.5.2806
    29 https://doi.org/10.1093/nar/7.5.1137
    30 https://doi.org/10.1126/science.164.3881.788
    31 https://doi.org/10.1126/science.482942
    32 schema:datePublished 1980-06
    33 schema:datePublishedReg 1980-06-01
    34 schema:description Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N31cc1bbf311547dcb3115271afbf75b3
    39 N7dab897a371b414fbdf7c71ee38901ca
    40 sg:journal.1016442
    41 schema:name A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
    42 schema:pagination 111-120
    43 schema:productId N05cd9046ea31409e95b9b7ae103cb500
    44 N2338b27802d74f5998c1ddfefded705a
    45 N2dc2f3c7479042abbc242bb7ba58459d
    46 Nb3dea2dcfcd24f44bcaa22259d3af9b9
    47 Nd5f22627938341deb142f389d0183582
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023239976
    49 https://doi.org/10.1007/bf01731581
    50 schema:sdDatePublished 2019-04-11T13:28
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N7277135ba7004d5f976e9853dfdb121d
    53 schema:url http://link.springer.com/10.1007/BF01731581
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N05cd9046ea31409e95b9b7ae103cb500 schema:name readcube_id
    58 schema:value 6eb8680cd143a579e9592eb2fda3579927fd24218ee7fc6b5ecea23719d89b04
    59 rdf:type schema:PropertyValue
    60 N20372b53b87a4385811855493ecf2288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name DNA
    62 rdf:type schema:DefinedTerm
    63 N21cf760ca49d455e8aeb43d407623f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Humans
    65 rdf:type schema:DefinedTerm
    66 N2338b27802d74f5998c1ddfefded705a schema:name doi
    67 schema:value 10.1007/bf01731581
    68 rdf:type schema:PropertyValue
    69 N25d3f5568d484555a5a2fcf9ef07edfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Species Specificity
    71 rdf:type schema:DefinedTerm
    72 N2dc2f3c7479042abbc242bb7ba58459d schema:name nlm_unique_id
    73 schema:value 0360051
    74 rdf:type schema:PropertyValue
    75 N31cc1bbf311547dcb3115271afbf75b3 schema:volumeNumber 16
    76 rdf:type schema:PublicationVolume
    77 N6038404ec0cf4afca1ecb11a61d6fe3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Base Sequence
    79 rdf:type schema:DefinedTerm
    80 N68df22f2c8054fb6936dcfc3c410a15f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Mutation
    82 rdf:type schema:DefinedTerm
    83 N7277135ba7004d5f976e9853dfdb121d schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N74770d040a24454c88999585ee822b04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Models, Biological
    87 rdf:type schema:DefinedTerm
    88 N7dab897a371b414fbdf7c71ee38901ca schema:issueNumber 2
    89 rdf:type schema:PublicationIssue
    90 N8f99bb6434704f9297394a8e09491b41 rdf:first sg:person.073272306.52
    91 rdf:rest rdf:nil
    92 N9607f00e2bd14b508b2bce439afdec89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Animals
    94 rdf:type schema:DefinedTerm
    95 Na640af2fef114244abff51f393483a61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Proteins
    97 rdf:type schema:DefinedTerm
    98 Nb3dea2dcfcd24f44bcaa22259d3af9b9 schema:name dimensions_id
    99 schema:value pub.1023239976
    100 rdf:type schema:PropertyValue
    101 Nce618317c8244fd18ac8555eeb942e7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Biological Evolution
    103 rdf:type schema:DefinedTerm
    104 Nd5f22627938341deb142f389d0183582 schema:name pubmed_id
    105 schema:value 7463489
    106 rdf:type schema:PropertyValue
    107 Nd7f95223deab47ee9fefb14f7ae8d70d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Probability
    109 rdf:type schema:DefinedTerm
    110 Nf9bcfb252cb24eb9aeffe008c1724348 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Mathematics
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Biological Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Genetics
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1016442 schema:issn 0022-2844
    120 1432-1432
    121 schema:name Journal of Molecular Evolution
    122 rdf:type schema:Periodical
    123 sg:person.073272306.52 schema:affiliation https://www.grid.ac/institutes/grid.288127.6
    124 schema:familyName Kimura
    125 schema:givenName Motoo
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52
    127 rdf:type schema:Person
    128 sg:pub.10.1007/bf01653945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024892741
    129 https://doi.org/10.1007/bf01653945
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf01732067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028261464
    132 https://doi.org/10.1007/bf01732067
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01732340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544282
    135 https://doi.org/10.1007/bf01732340
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
    138 https://doi.org/10.1038/217624a0
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/267275a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004682902
    141 https://doi.org/10.1038/267275a0
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/286222a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533482
    144 https://doi.org/10.1038/286222a0
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/scientificamerican1179-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056630243
    147 https://doi.org/10.1038/scientificamerican1179-98
    148 rdf:type schema:CreativeWork
    149 https://app.dimensions.ai/details/publication/pub.1082017199 schema:CreativeWork
    150 https://doi.org/10.1016/0092-8674(77)90090-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047798930
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/0092-8674(78)90040-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042992310
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/0092-8674(78)90081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044677861
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1073/pnas.71.7.2848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031518483
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1073/pnas.77.5.2806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019345179
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1093/nar/7.5.1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020381664
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1126/science.164.3881.788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497053
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1126/science.482942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062627482
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.288127.6 schema:alternateName National Institute of Genetics
    169 schema:name National Institute of Genetics, 411, Mishima, Japan
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...