A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-06

AUTHORS

Motoo Kimura

ABSTRACT

Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution. More... »

PAGES

111-120

Journal

TITLE

Journal of Molecular Evolution

ISSUE

2

VOLUME

16

Author Affiliations

Related Patents

  • Compositions And Methods For Detecting Klebsiella Pneumoniae
  • System And Method For Sequence Distance Measure For Phylogenetic Tree Construction
  • Classification Of Nucleotide Sequences By Latent Semantic Analysis
  • Method For Producing L-Amino Acid From Seaweed-Derived Biomass
  • Hot Spring Bacterial Strain Bkh1 And Protein Isolated Therefrom, Concrete Compositions, And Uses Thereof
  • Species-Specific, Genus-Specific And Universal Dna Probes And Amplification Primers To Rapidly Detect And Identify Common Bacterial And Fungal Pathogens And Associated Antibiotic Resistance Genes From Clinical Specimens For Diagnosis In Microbiology Laboratories
  • Species-Specific, Genus-Specific And Universal Dna Probes And Amplification Primers To Rapidly Detect And Identify Common Bacterial And Fungal Pathogens And Associated Antibiotic Resistance Genes From Clinical Specimens For Diagnosis In Microbiology Laboratories
  • Highly Conserved Tuf Genes And Their Use To Generate Probes And Primers For Detection Of Coagulase-Negative Staphylococcus
  • Hot Spring Bacterial Strain Bkh1 And Protein Isolated Therefrom, Concrete Compositions, And Uses Thereof
  • Highly Conserved Genes And Their Use To Generate Probes And Primers For Detection Of Microorganisms
  • Methods And Probes For Detecting A Vancomycin Resistance Gene
  • Fungi And Products Thereof
  • Probes And Primers For Detection Of Bacterial Pathogens And Antibiotic Resistance Genes
  • Materials And Methods For The Production Of Green Concrete
  • Method For Sequencing Polynucleotides
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01731581

    DOI

    http://dx.doi.org/10.1007/bf01731581

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023239976

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7463489


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Probability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Genetics", 
              "id": "https://www.grid.ac/institutes/grid.288127.6", 
              "name": [
                "National Institute of Genetics, 411, Mishima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kimura", 
            "givenName": "Motoo", 
            "id": "sg:person.073272306.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/267275a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004682902", 
              "https://doi.org/10.1038/267275a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/267275a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004682902", 
              "https://doi.org/10.1038/267275a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-3211-9.50009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016180325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.77.5.2806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019345179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/7.5.1137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020381664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01653945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024892741", 
              "https://doi.org/10.1007/bf01653945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01653945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024892741", 
              "https://doi.org/10.1007/bf01653945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.71.7.2848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031518483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(78)90040-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042992310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/286222a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043533482", 
              "https://doi.org/10.1038/286222a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(78)90081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044677861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(77)90090-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047798930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1179-98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056630243", 
              "https://doi.org/10.1038/scientificamerican1179-98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.164.3881.788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062497053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.482942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062627482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082017199", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-06", 
        "datePublishedReg": "1980-06-01", 
        "description": "Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or \"transition\" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or \"transversion\" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01731581", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences", 
        "pagination": "111-120", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6eb8680cd143a579e9592eb2fda3579927fd24218ee7fc6b5ecea23719d89b04"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7463489"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0360051"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01731581"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023239976"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01731581", 
          "https://app.dimensions.ai/details/publication/pub.1023239976"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01731581"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01731581 schema:about N426fce9800924b39a863fe052ab7a976
    2 N51e08f42b0c94b3297a48bddebf06b50
    3 N55bd1bb0486340839008b19914687a9a
    4 N67db242251c649da8183cb8d7e3ea852
    5 N6a34c644c28347a18c590fd564bbd123
    6 N83b98897131a46208db44a00d6b0d402
    7 Nadb189d6b0c3462c8ad30fb198d8af5e
    8 Nb20820114425447d9050e9bd4c468176
    9 Nb5c322b64a87401e8ce1aeb592381db1
    10 Nc194bef7577a4208ab1e116c93efce53
    11 Ne33084e5ff884c0d8de34ebad9b828b5
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N1ceaf9f2c77e45ac926525a96dadec5e
    15 schema:citation sg:pub.10.1007/bf01653945
    16 sg:pub.10.1007/bf01732067
    17 sg:pub.10.1007/bf01732340
    18 sg:pub.10.1038/217624a0
    19 sg:pub.10.1038/267275a0
    20 sg:pub.10.1038/286222a0
    21 sg:pub.10.1038/scientificamerican1179-98
    22 https://app.dimensions.ai/details/publication/pub.1082017199
    23 https://doi.org/10.1016/0092-8674(77)90090-3
    24 https://doi.org/10.1016/0092-8674(78)90040-5
    25 https://doi.org/10.1016/0092-8674(78)90081-8
    26 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
    27 https://doi.org/10.1073/pnas.71.7.2848
    28 https://doi.org/10.1073/pnas.77.5.2806
    29 https://doi.org/10.1093/nar/7.5.1137
    30 https://doi.org/10.1126/science.164.3881.788
    31 https://doi.org/10.1126/science.482942
    32 schema:datePublished 1980-06
    33 schema:datePublishedReg 1980-06-01
    34 schema:description Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N2da4e2f1a3814a83b81e33dfdaacdb44
    39 Nfabe93971a91403487c94c1163e9f641
    40 sg:journal.1016442
    41 schema:name A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
    42 schema:pagination 111-120
    43 schema:productId N04c2fd7b50a6491ba45edd75a9134234
    44 N0f8179b140b544c49635e6d19f3e315e
    45 N70363c12ebfe46ba96fd0ace71162e32
    46 Nb7ead7dd4b764714998773dfe182edef
    47 Neb20242e96ac43189203f9c8ea8ccfdb
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023239976
    49 https://doi.org/10.1007/bf01731581
    50 schema:sdDatePublished 2019-04-11T13:28
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N07edc95d63a045e0995863b33a93fa7a
    53 schema:url http://link.springer.com/10.1007/BF01731581
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N04c2fd7b50a6491ba45edd75a9134234 schema:name dimensions_id
    58 schema:value pub.1023239976
    59 rdf:type schema:PropertyValue
    60 N07edc95d63a045e0995863b33a93fa7a schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N0f8179b140b544c49635e6d19f3e315e schema:name pubmed_id
    63 schema:value 7463489
    64 rdf:type schema:PropertyValue
    65 N1ceaf9f2c77e45ac926525a96dadec5e rdf:first sg:person.073272306.52
    66 rdf:rest rdf:nil
    67 N2da4e2f1a3814a83b81e33dfdaacdb44 schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 N426fce9800924b39a863fe052ab7a976 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Proteins
    71 rdf:type schema:DefinedTerm
    72 N51e08f42b0c94b3297a48bddebf06b50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Mutation
    74 rdf:type schema:DefinedTerm
    75 N55bd1bb0486340839008b19914687a9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Mathematics
    77 rdf:type schema:DefinedTerm
    78 N67db242251c649da8183cb8d7e3ea852 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Base Sequence
    80 rdf:type schema:DefinedTerm
    81 N6a34c644c28347a18c590fd564bbd123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Humans
    83 rdf:type schema:DefinedTerm
    84 N70363c12ebfe46ba96fd0ace71162e32 schema:name nlm_unique_id
    85 schema:value 0360051
    86 rdf:type schema:PropertyValue
    87 N83b98897131a46208db44a00d6b0d402 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Species Specificity
    89 rdf:type schema:DefinedTerm
    90 Nadb189d6b0c3462c8ad30fb198d8af5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name DNA
    92 rdf:type schema:DefinedTerm
    93 Nb20820114425447d9050e9bd4c468176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Biological Evolution
    95 rdf:type schema:DefinedTerm
    96 Nb5c322b64a87401e8ce1aeb592381db1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Animals
    98 rdf:type schema:DefinedTerm
    99 Nb7ead7dd4b764714998773dfe182edef schema:name readcube_id
    100 schema:value 6eb8680cd143a579e9592eb2fda3579927fd24218ee7fc6b5ecea23719d89b04
    101 rdf:type schema:PropertyValue
    102 Nc194bef7577a4208ab1e116c93efce53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Models, Biological
    104 rdf:type schema:DefinedTerm
    105 Ne33084e5ff884c0d8de34ebad9b828b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Probability
    107 rdf:type schema:DefinedTerm
    108 Neb20242e96ac43189203f9c8ea8ccfdb schema:name doi
    109 schema:value 10.1007/bf01731581
    110 rdf:type schema:PropertyValue
    111 Nfabe93971a91403487c94c1163e9f641 schema:volumeNumber 16
    112 rdf:type schema:PublicationVolume
    113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Biological Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Genetics
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1016442 schema:issn 0022-2844
    120 1432-1432
    121 schema:name Journal of Molecular Evolution
    122 rdf:type schema:Periodical
    123 sg:person.073272306.52 schema:affiliation https://www.grid.ac/institutes/grid.288127.6
    124 schema:familyName Kimura
    125 schema:givenName Motoo
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52
    127 rdf:type schema:Person
    128 sg:pub.10.1007/bf01653945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024892741
    129 https://doi.org/10.1007/bf01653945
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf01732067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028261464
    132 https://doi.org/10.1007/bf01732067
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01732340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544282
    135 https://doi.org/10.1007/bf01732340
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
    138 https://doi.org/10.1038/217624a0
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/267275a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004682902
    141 https://doi.org/10.1038/267275a0
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/286222a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533482
    144 https://doi.org/10.1038/286222a0
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/scientificamerican1179-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056630243
    147 https://doi.org/10.1038/scientificamerican1179-98
    148 rdf:type schema:CreativeWork
    149 https://app.dimensions.ai/details/publication/pub.1082017199 schema:CreativeWork
    150 https://doi.org/10.1016/0092-8674(77)90090-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047798930
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/0092-8674(78)90040-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042992310
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/0092-8674(78)90081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044677861
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/b978-1-4832-3211-9.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016180325
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1073/pnas.71.7.2848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031518483
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1073/pnas.77.5.2806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019345179
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1093/nar/7.5.1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020381664
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1126/science.164.3881.788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497053
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1126/science.482942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062627482
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.288127.6 schema:alternateName National Institute of Genetics
    169 schema:name National Institute of Genetics, 411, Mishima, Japan
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...