A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-06

AUTHORS

Motoo Kimura

ABSTRACT

Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or “transition” type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or “transversion” type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = — (1/2) ln {(1 — 2P — Q) }. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = — (1/2) ln (1 — 2P — Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution. More... »

PAGES

111-120

Journal

TITLE

Journal of Molecular Evolution

ISSUE

2

VOLUME

16

Related Patents

  • Compositions And Methods For Detecting Klebsiella Pneumoniae
  • System And Method For Sequence Distance Measure For Phylogenetic Tree Construction
  • Detection And Treatment Of Pmcv Infection In Cleaner Fish
  • Classification Of Nucleotide Sequences By Latent Semantic Analysis
  • Hot Spring Bacterial Strain Bkh1 And Protein Isolated Therefrom, Concrete Compositions, And Uses Thereof
  • Species-Specific, Genus-Specific And Universal Dna Probes And Amplification Primers To Rapidly Detect And Identify Common Bacterial And Fungal Pathogens And Associated Antibiotic Resistance Genes From Clinical Specimens For Diagnosis In Microbiology Laboratories
  • Species-Specific, Genus-Specific And Universal Dna Probes And Amplification Primers To Rapidly Detect And Identify Common Bacterial And Fungal Pathogens And Associated Antibiotic Resistance Genes From Clinical Specimens For Diagnosis In Microbiology Laboratories
  • Highly Conserved Tuf Genes And Their Use To Generate Probes And Primers For Detection Of Coagulase-Negative Staphylococcus
  • Hot Spring Bacterial Strain Bkh1 And Protein Isolated Therefrom, Concrete Compositions, And Uses Thereof
  • Probes And Primers For Detection Of Bacterial Pathogens And Antibiotic Resistance Genes
  • Materials And Methods For The Production Of Green Concrete
  • Highly Conserved Genes And Their Use To Generate Probes And Primers For Detection Of Microorganisms
  • Method For Sequencing Polynucleotides
  • Methods And Probes For Detecting A Vancomycin Resistance Gene
  • Fungi And Products Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01731581

    DOI

    http://dx.doi.org/10.1007/bf01731581

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023239976

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7463489


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Probability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Genetics, 411, Mishima, Japan", 
              "id": "http://www.grid.ac/institutes/grid.288127.6", 
              "name": [
                "National Institute of Genetics, 411, Mishima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kimura", 
            "givenName": "Motoo", 
            "id": "sg:person.073272306.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01732067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028261464", 
              "https://doi.org/10.1007/bf01732067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1179-98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056630243", 
              "https://doi.org/10.1038/scientificamerican1179-98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698058", 
              "https://doi.org/10.1038/217624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/286222a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043533482", 
              "https://doi.org/10.1038/286222a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01653945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024892741", 
              "https://doi.org/10.1007/bf01653945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/267275a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004682902", 
              "https://doi.org/10.1038/267275a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-06", 
        "datePublishedReg": "1980-06-01", 
        "description": "Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or \u201ctransition\u201d type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or \u201ctransversion\u201d type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = \u2014 (1/2) ln {(1 \u2014 2P \u2014 Q) }. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = \u2014 (1/2) ln (1 \u2014 2P \u2014 Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01731581", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "evolutionary rates", 
          "evolutionary distance", 
          "nucleotide sequence", 
          "amino acid-altering substitutions", 
          "base substitutions", 
          "third codon position", 
          "evolutionary base substitutions", 
          "globin sequences", 
          "synonymous substitutions", 
          "codon positions", 
          "nucleotide sites", 
          "nucleotide substitutions", 
          "homologous sites", 
          "different nucleotide bases", 
          "nucleotide bases", 
          "type I", 
          "sequence", 
          "purine", 
          "sites", 
          "substitution", 
          "types of differences", 
          "divergence", 
          "pyrimidine", 
          "type II", 
          "evolution", 
          "differences", 
          "pairs", 
          "high rate", 
          "basis", 
          "components", 
          "distance", 
          "rate", 
          "fraction", 
          "number", 
          "types", 
          "comparative study", 
          "study", 
          "simple method", 
          "position", 
          "example", 
          "time", 
          "years", 
          "Ln", 
          "method", 
          "terms", 
          "standard error", 
          "error", 
          "simple formula", 
          "formula", 
          "ks"
        ], 
        "name": "A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences", 
        "pagination": "111-120", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023239976"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01731581"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7463489"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01731581", 
          "https://app.dimensions.ai/details/publication/pub.1023239976"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_173.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01731581"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01731581'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      94 URIs      79 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01731581 schema:about N00ec758206f94dddb62ad30a6b36f278
    2 N314242d1edda4eaa9d31241cf004dc43
    3 N337913e74f944b16b95e3154d6a85139
    4 N5398b9aaae844deabf96dfe7d5f86a52
    5 N6195e86e211f4b41859913ffc274f30f
    6 N66e19caa74ac4f0ab2b9d5821e36c515
    7 N74960058583846d99c271c68c8fad830
    8 N9deea4349f0f4b2d9636cb4f79e795c5
    9 Nb417ac8c4a624f319ad07cd0369e4600
    10 Nf2eaa616440c4e3595f62573b962edfc
    11 Nfa06a8749d3147fe9d8f4ae9a6e63a62
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author Nb84812db89af4f8f9fb76b6eeda5fcdc
    15 schema:citation sg:pub.10.1007/bf01653945
    16 sg:pub.10.1007/bf01732067
    17 sg:pub.10.1007/bf01732340
    18 sg:pub.10.1038/217624a0
    19 sg:pub.10.1038/267275a0
    20 sg:pub.10.1038/286222a0
    21 sg:pub.10.1038/scientificamerican1179-98
    22 schema:datePublished 1980-06
    23 schema:datePublishedReg 1980-06-01
    24 schema:description Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or “transition” type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or “transversion” type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = — (1/2) ln {(1 — 2P — Q) }. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = — (1/2) ln (1 — 2P — Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N18a6fd1e6efd4dac8b31422d17139c11
    28 Ncbdf7e06688847948b723668a78a7f83
    29 sg:journal.1016442
    30 schema:keywords Ln
    31 amino acid-altering substitutions
    32 base substitutions
    33 basis
    34 codon positions
    35 comparative study
    36 components
    37 differences
    38 different nucleotide bases
    39 distance
    40 divergence
    41 error
    42 evolution
    43 evolutionary base substitutions
    44 evolutionary distance
    45 evolutionary rates
    46 example
    47 formula
    48 fraction
    49 globin sequences
    50 high rate
    51 homologous sites
    52 ks
    53 method
    54 nucleotide bases
    55 nucleotide sequence
    56 nucleotide sites
    57 nucleotide substitutions
    58 number
    59 pairs
    60 position
    61 purine
    62 pyrimidine
    63 rate
    64 sequence
    65 simple formula
    66 simple method
    67 sites
    68 standard error
    69 study
    70 substitution
    71 synonymous substitutions
    72 terms
    73 third codon position
    74 time
    75 type I
    76 type II
    77 types
    78 types of differences
    79 years
    80 schema:name A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
    81 schema:pagination 111-120
    82 schema:productId N25ea944c23a44334add9f9ff5381766e
    83 Nc6658e4339094eacb81070ab475b916e
    84 Nd3f52b23b58b4e32919e3cc542fe6282
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023239976
    86 https://doi.org/10.1007/bf01731581
    87 schema:sdDatePublished 2022-08-04T16:50
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N973a3cc1c5cb458dabc53a1fabfa0e26
    90 schema:url https://doi.org/10.1007/bf01731581
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N00ec758206f94dddb62ad30a6b36f278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Biological Evolution
    96 rdf:type schema:DefinedTerm
    97 N18a6fd1e6efd4dac8b31422d17139c11 schema:volumeNumber 16
    98 rdf:type schema:PublicationVolume
    99 N25ea944c23a44334add9f9ff5381766e schema:name dimensions_id
    100 schema:value pub.1023239976
    101 rdf:type schema:PropertyValue
    102 N314242d1edda4eaa9d31241cf004dc43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Proteins
    104 rdf:type schema:DefinedTerm
    105 N337913e74f944b16b95e3154d6a85139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Animals
    107 rdf:type schema:DefinedTerm
    108 N5398b9aaae844deabf96dfe7d5f86a52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Humans
    110 rdf:type schema:DefinedTerm
    111 N6195e86e211f4b41859913ffc274f30f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Probability
    113 rdf:type schema:DefinedTerm
    114 N66e19caa74ac4f0ab2b9d5821e36c515 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name DNA
    116 rdf:type schema:DefinedTerm
    117 N74960058583846d99c271c68c8fad830 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Mathematics
    119 rdf:type schema:DefinedTerm
    120 N973a3cc1c5cb458dabc53a1fabfa0e26 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N9deea4349f0f4b2d9636cb4f79e795c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Base Sequence
    124 rdf:type schema:DefinedTerm
    125 Nb417ac8c4a624f319ad07cd0369e4600 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Mutation
    127 rdf:type schema:DefinedTerm
    128 Nb84812db89af4f8f9fb76b6eeda5fcdc rdf:first sg:person.073272306.52
    129 rdf:rest rdf:nil
    130 Nc6658e4339094eacb81070ab475b916e schema:name pubmed_id
    131 schema:value 7463489
    132 rdf:type schema:PropertyValue
    133 Ncbdf7e06688847948b723668a78a7f83 schema:issueNumber 2
    134 rdf:type schema:PublicationIssue
    135 Nd3f52b23b58b4e32919e3cc542fe6282 schema:name doi
    136 schema:value 10.1007/bf01731581
    137 rdf:type schema:PropertyValue
    138 Nf2eaa616440c4e3595f62573b962edfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Models, Biological
    140 rdf:type schema:DefinedTerm
    141 Nfa06a8749d3147fe9d8f4ae9a6e63a62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Species Specificity
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Biological Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Genetics
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1016442 schema:issn 0022-2844
    151 1432-1432
    152 schema:name Journal of Molecular Evolution
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.073272306.52 schema:affiliation grid-institutes:grid.288127.6
    156 schema:familyName Kimura
    157 schema:givenName Motoo
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.073272306.52
    159 rdf:type schema:Person
    160 sg:pub.10.1007/bf01653945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024892741
    161 https://doi.org/10.1007/bf01653945
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf01732067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028261464
    164 https://doi.org/10.1007/bf01732067
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf01732340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544282
    167 https://doi.org/10.1007/bf01732340
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
    170 https://doi.org/10.1038/217624a0
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/267275a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004682902
    173 https://doi.org/10.1038/267275a0
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/286222a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533482
    176 https://doi.org/10.1038/286222a0
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/scientificamerican1179-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056630243
    179 https://doi.org/10.1038/scientificamerican1179-98
    180 rdf:type schema:CreativeWork
    181 grid-institutes:grid.288127.6 schema:alternateName National Institute of Genetics, 411, Mishima, Japan
    182 schema:name National Institute of Genetics, 411, Mishima, Japan
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...