A new access to path integrals and Fokker Planck equations via the maximum calibre principle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-12

AUTHORS

H. Haken

ABSTRACT

Under the assumption that the underlying process is continuous Markovian and using simple short time correlation functions as constraints in the maximum calibre principle of Jaynes we derive the explicit path integrals from which then the corresponding Fokker-Planck equation may be deduced. Our approach is valid for all systems irrespective of whether they are close to or far away from thermal equilibrium and it applies even to nonphysical systems. More... »

PAGES

505-510

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01726199

DOI

http://dx.doi.org/10.1007/bf01726199

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026035060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57/IV, D-7000, Stuttgart 80, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haken", 
        "givenName": "H.", 
        "id": "sg:person.012214634317.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214634317.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01726197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013034151", 
          "https://doi.org/10.1007/bf01726197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01726197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013034151", 
          "https://doi.org/10.1007/bf01726197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01315509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020650443", 
          "https://doi.org/10.1007/bf01315509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01315509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020650443", 
          "https://doi.org/10.1007/bf01315509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0044955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026841257", 
          "https://doi.org/10.1007/bfb0044955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01317801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033078209", 
          "https://doi.org/10.1007/bf01317801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01317801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033078209", 
          "https://doi.org/10.1007/bf01317801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034645186", 
          "https://doi.org/10.1007/bf01360904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034645186", 
          "https://doi.org/10.1007/bf01360904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-12", 
    "datePublishedReg": "1986-12-01", 
    "description": "Under the assumption that the underlying process is continuous Markovian and using simple short time correlation functions as constraints in the maximum calibre principle of Jaynes we derive the explicit path integrals from which then the corresponding Fokker-Planck equation may be deduced. Our approach is valid for all systems irrespective of whether they are close to or far away from thermal equilibrium and it applies even to nonphysical systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01726199", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "A new access to path integrals and Fokker Planck equations via the maximum calibre principle", 
    "pagination": "505-510", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c075060e73b97560b9387e86f7b4bc1590bc5b3c3ed7a2e20fe30a595b48cb3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01726199"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026035060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01726199", 
      "https://app.dimensions.ai/details/publication/pub.1026035060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99833_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01726199"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01726199'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01726199'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01726199'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01726199'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01726199 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2c300618869b4174a840c36fc7bc7f9f
4 schema:citation sg:pub.10.1007/bf01315509
5 sg:pub.10.1007/bf01317801
6 sg:pub.10.1007/bf01360904
7 sg:pub.10.1007/bf01726197
8 sg:pub.10.1007/bfb0044955
9 https://doi.org/10.1103/physrev.106.620
10 https://doi.org/10.1103/physrev.91.1505
11 schema:datePublished 1986-12
12 schema:datePublishedReg 1986-12-01
13 schema:description Under the assumption that the underlying process is continuous Markovian and using simple short time correlation functions as constraints in the maximum calibre principle of Jaynes we derive the explicit path integrals from which then the corresponding Fokker-Planck equation may be deduced. Our approach is valid for all systems irrespective of whether they are close to or far away from thermal equilibrium and it applies even to nonphysical systems.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N5dd9efaea8f64e05ad2b91b75ed16c86
18 N6a59f4c3de4641a1ab95c74011387ada
19 sg:journal.1285002
20 schema:name A new access to path integrals and Fokker Planck equations via the maximum calibre principle
21 schema:pagination 505-510
22 schema:productId N1eb6b7d236774525b69f185e7cd22a94
23 N7d20afe097b94b69b6124fde91c6ef3d
24 Nd86ec01e074a40d3975b0d41010d5ea1
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026035060
26 https://doi.org/10.1007/bf01726199
27 schema:sdDatePublished 2019-04-11T09:38
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nf61c4746ab344cb792f1a1ffb6e85c65
30 schema:url http://link.springer.com/10.1007/BF01726199
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N1eb6b7d236774525b69f185e7cd22a94 schema:name doi
35 schema:value 10.1007/bf01726199
36 rdf:type schema:PropertyValue
37 N2c300618869b4174a840c36fc7bc7f9f rdf:first sg:person.012214634317.11
38 rdf:rest rdf:nil
39 N5dd9efaea8f64e05ad2b91b75ed16c86 schema:volumeNumber 63
40 rdf:type schema:PublicationVolume
41 N6a59f4c3de4641a1ab95c74011387ada schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 N7d20afe097b94b69b6124fde91c6ef3d schema:name readcube_id
44 schema:value 7c075060e73b97560b9387e86f7b4bc1590bc5b3c3ed7a2e20fe30a595b48cb3
45 rdf:type schema:PropertyValue
46 Nd86ec01e074a40d3975b0d41010d5ea1 schema:name dimensions_id
47 schema:value pub.1026035060
48 rdf:type schema:PropertyValue
49 Nf61c4746ab344cb792f1a1ffb6e85c65 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
52 schema:name Information and Computing Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
55 schema:name Artificial Intelligence and Image Processing
56 rdf:type schema:DefinedTerm
57 sg:journal.1285002 schema:issn 0722-3277
58 1431-584X
59 schema:name Zeitschrift für Physik B Condensed Matter
60 rdf:type schema:Periodical
61 sg:person.012214634317.11 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
62 schema:familyName Haken
63 schema:givenName H.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214634317.11
65 rdf:type schema:Person
66 sg:pub.10.1007/bf01315509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020650443
67 https://doi.org/10.1007/bf01315509
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf01317801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033078209
70 https://doi.org/10.1007/bf01317801
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01360904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034645186
73 https://doi.org/10.1007/bf01360904
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01726197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013034151
76 https://doi.org/10.1007/bf01726197
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0044955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026841257
79 https://doi.org/10.1007/bfb0044955
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrev.91.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460948
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.5719.a schema:alternateName University of Stuttgart
86 schema:name Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57/IV, D-7000, Stuttgart 80, Germany
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...