Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-12

AUTHORS

Joseph A. Ball

ABSTRACT

Classical interpolation problems are concerned with the problem of finding an analytic function on the unit disk bounded by one which takes on prescribed values at certain prescribed points inside the disk (Pick-Nevanlinna) or on the boundary of the disk (Loewner). We consider the problem for matrix-valued functions having as many asℓ poles (ℓ a nonnegative integer) inside the disk but still uniformly bounded by one on the boundary of the disk. Our technique is an adaptation of that of Sz.-Nagy and Koranyi to spaces with an indefinite inner product. The problem arises in the broadband matching problem for electrical circuits and certain multichannel scattering problems in physics. More... »

PAGES

804-840

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01691925

DOI

http://dx.doi.org/10.1007/bf01691925

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019968975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "id": "sg:person.013713536413.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0016-0032(67)90582-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001661823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1968-0231113-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004076084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02559538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009068199", 
          "https://doi.org/10.1007/bf02559538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65755-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016038932", 
          "https://doi.org/10.1007/978-3-642-65755-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65755-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016038932", 
          "https://doi.org/10.1007/978-3-642-65755-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017307108", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-6293-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307108", 
          "https://doi.org/10.1007/978-3-0348-6293-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-6293-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307108", 
          "https://doi.org/10.1007/978-3-0348-6293-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5183-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019055000", 
          "https://doi.org/10.1007/978-3-0348-5183-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01701500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020538123", 
          "https://doi.org/10.1007/bf01701500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01701500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020538123", 
          "https://doi.org/10.1007/bf01701500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1967-0208383-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020835424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(80)90066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044151800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02020526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053174114", 
          "https://doi.org/10.1007/bf02020526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02020526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053174114", 
          "https://doi.org/10.1007/bf02020526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1971v015n01abeh001531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058199059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1994641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069689130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4099/jjm1924.1.0_83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092308103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-12", 
    "datePublishedReg": "1983-12-01", 
    "description": "Classical interpolation problems are concerned with the problem of finding an analytic function on the unit disk bounded by one which takes on prescribed values at certain prescribed points inside the disk (Pick-Nevanlinna) or on the boundary of the disk (Loewner). We consider the problem for matrix-valued functions having as many as\u2113 poles (\u2113 a nonnegative integer) inside the disk but still uniformly bounded by one on the boundary of the disk. Our technique is an adaptation of that of Sz.-Nagy and Koranyi to spaces with an indefinite inner product. The problem arises in the broadband matching problem for electrical circuits and certain multichannel scattering problems in physics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01691925", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions", 
    "pagination": "804-840", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f2531aaabb91a938666e4d0684d05037987d561f48b74b81db0aea4590a7001"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01691925"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019968975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01691925", 
      "https://app.dimensions.ai/details/publication/pub.1019968975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01691925"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01691925'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01691925'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01691925'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01691925'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01691925 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3460a3a58ba246a18d35d38bb0649bf6
4 schema:citation sg:pub.10.1007/978-3-0348-5183-1_5
5 sg:pub.10.1007/978-3-0348-6293-6
6 sg:pub.10.1007/978-3-642-65567-8
7 sg:pub.10.1007/978-3-642-65755-9
8 sg:pub.10.1007/bf01701500
9 sg:pub.10.1007/bf02020526
10 sg:pub.10.1007/bf02559538
11 https://app.dimensions.ai/details/publication/pub.1017307108
12 https://doi.org/10.1002/mana.19770770116
13 https://doi.org/10.1016/0016-0032(67)90582-0
14 https://doi.org/10.1016/0022-1236(80)90066-x
15 https://doi.org/10.1070/sm1971v015n01abeh001531
16 https://doi.org/10.1090/mmono/002
17 https://doi.org/10.1090/mmono/050
18 https://doi.org/10.1090/s0002-9947-1967-0208383-8
19 https://doi.org/10.1090/s0002-9947-1968-0231113-1
20 https://doi.org/10.2307/1994641
21 https://doi.org/10.4099/jjm1924.1.0_83
22 schema:datePublished 1983-12
23 schema:datePublishedReg 1983-12-01
24 schema:description Classical interpolation problems are concerned with the problem of finding an analytic function on the unit disk bounded by one which takes on prescribed values at certain prescribed points inside the disk (Pick-Nevanlinna) or on the boundary of the disk (Loewner). We consider the problem for matrix-valued functions having as many asℓ poles (ℓ a nonnegative integer) inside the disk but still uniformly bounded by one on the boundary of the disk. Our technique is an adaptation of that of Sz.-Nagy and Koranyi to spaces with an indefinite inner product. The problem arises in the broadband matching problem for electrical circuits and certain multichannel scattering problems in physics.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N1dfa0c8ac5a04a1e93e3f690115122a3
29 N7c940c08b72e4ef3b3033424fa8ac687
30 sg:journal.1136245
31 schema:name Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions
32 schema:pagination 804-840
33 schema:productId N1a1601bfb445421b819270ed212c3824
34 N345ffd93883d44d3ad665ab21709b29e
35 N4b14ed561d5b4f2db6b8d92504d5be0b
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
37 https://doi.org/10.1007/bf01691925
38 schema:sdDatePublished 2019-04-11T13:34
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nf19cb2bbfdad4b5ab7e36d397f204fb2
41 schema:url http://link.springer.com/10.1007/BF01691925
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1a1601bfb445421b819270ed212c3824 schema:name doi
46 schema:value 10.1007/bf01691925
47 rdf:type schema:PropertyValue
48 N1dfa0c8ac5a04a1e93e3f690115122a3 schema:volumeNumber 6
49 rdf:type schema:PublicationVolume
50 N345ffd93883d44d3ad665ab21709b29e schema:name dimensions_id
51 schema:value pub.1019968975
52 rdf:type schema:PropertyValue
53 N3460a3a58ba246a18d35d38bb0649bf6 rdf:first sg:person.013713536413.78
54 rdf:rest rdf:nil
55 N4b14ed561d5b4f2db6b8d92504d5be0b schema:name readcube_id
56 schema:value 5f2531aaabb91a938666e4d0684d05037987d561f48b74b81db0aea4590a7001
57 rdf:type schema:PropertyValue
58 N7c940c08b72e4ef3b3033424fa8ac687 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 Nf19cb2bbfdad4b5ab7e36d397f204fb2 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136245 schema:issn 0378-620X
69 1420-8989
70 schema:name Integral Equations and Operator Theory
71 rdf:type schema:Periodical
72 sg:person.013713536413.78 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
73 schema:familyName Ball
74 schema:givenName Joseph A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78
76 rdf:type schema:Person
77 sg:pub.10.1007/978-3-0348-5183-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019055000
78 https://doi.org/10.1007/978-3-0348-5183-1_5
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/978-3-0348-6293-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307108
81 https://doi.org/10.1007/978-3-0348-6293-6
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
84 https://doi.org/10.1007/978-3-642-65567-8
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/978-3-642-65755-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016038932
87 https://doi.org/10.1007/978-3-642-65755-9
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01701500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020538123
90 https://doi.org/10.1007/bf01701500
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02020526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053174114
93 https://doi.org/10.1007/bf02020526
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02559538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009068199
96 https://doi.org/10.1007/bf02559538
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1017307108 schema:CreativeWork
99 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0016-0032(67)90582-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001661823
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0022-1236(80)90066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044151800
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1070/sm1971v015n01abeh001531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058199059
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/mmono/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567780
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1090/mmono/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567826
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/s0002-9947-1967-0208383-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020835424
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/s0002-9947-1968-0231113-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004076084
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/1994641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069689130
116 rdf:type schema:CreativeWork
117 https://doi.org/10.4099/jjm1924.1.0_83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092308103
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
120 schema:name Department of Mathematics, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...