The structure of cytochromec and the rates of molecular evolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-03

AUTHORS

Richard E. Dickerson

ABSTRACT

The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles. More... »

PAGES

26-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01659392

DOI

http://dx.doi.org/10.1007/bf01659392

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035638159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4377446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome c Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA", 
            "Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dickerson", 
        "givenName": "Richard E.", 
        "id": "sg:person.01071211075.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.bi.37.070168.003455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000620540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.50.4.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001258434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-9861(67)90177-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007874310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/226237a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026125494", 
          "https://doi.org/10.1038/226237a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(66)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(66)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1968.tb11901.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052040509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0565-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056541863", 
          "https://doi.org/10.1038/scientificamerican0565-110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.133.3459.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062475752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.155.3760.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.161.3837.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062494874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.164.3881.788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062497053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080174803", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081042727", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081159613", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1968.tb03445.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085739129"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-03", 
    "datePublishedReg": "1971-03-01", 
    "description": "The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic \u201cchannels\u201d leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01659392", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "The structure of cytochromec and the rates of molecular evolution", 
    "pagination": "26-45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9c49476960b5372fd052f1d56ce53a8b0cd0573d27f2beedd326f8a9b37a6b8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4377446"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01659392"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035638159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01659392", 
      "https://app.dimensions.ai/details/publication/pub.1035638159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47976_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01659392"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01659392 schema:about N163117f9ab3343fb81c807d66bc7d6e5
2 N272f03a1c8784ec0986e9556164c6575
3 N2870bc1be57141e4aad534289b308c76
4 N31418e2b9c5f4f5aa0659877ca732d5a
5 N6c759af4226a462ead57b32c0f859d00
6 N7167d57420c54a11883c212ff1ee9e87
7 N9ebae156a8e24907a39a9109038e6321
8 Nb5f0442dab0245d1b35071d5e1f3083d
9 Ne029f4a7abe34ab69d9c2bb7240c436e
10 Nff940819195d41779a34354a4a68fb06
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Ncc4f4626e7184e6484b8dae3438a9dad
14 schema:citation sg:pub.10.1038/226237a0
15 sg:pub.10.1038/scientificamerican0565-110
16 https://app.dimensions.ai/details/publication/pub.1080174803
17 https://app.dimensions.ai/details/publication/pub.1081042727
18 https://app.dimensions.ai/details/publication/pub.1081159613
19 https://doi.org/10.1016/0003-9861(67)90177-4
20 https://doi.org/10.1016/0012-8252(66)90040-7
21 https://doi.org/10.1073/pnas.50.4.672
22 https://doi.org/10.1111/j.1558-5646.1968.tb03445.x
23 https://doi.org/10.1111/j.1749-6632.1968.tb11901.x
24 https://doi.org/10.1126/science.133.3459.1105
25 https://doi.org/10.1126/science.155.3760.279
26 https://doi.org/10.1126/science.161.3837.165
27 https://doi.org/10.1126/science.164.3881.788
28 https://doi.org/10.1146/annurev.bi.37.070168.003455
29 schema:datePublished 1971-03
30 schema:datePublishedReg 1971-03-01
31 schema:description The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N184759cda6bd49b7b1533c952da4ac8e
36 N749ab0c99df84647873b77de91cf6b47
37 sg:journal.1016442
38 schema:name The structure of cytochromec and the rates of molecular evolution
39 schema:pagination 26-45
40 schema:productId N0edcd12b495d458783cb3b08b509bccb
41 N0f4a00c42e8a4b39ad97df703add2fbc
42 Nb252f316a91442e5b039d076c0d6dbe8
43 Nbe7016ab189041f291486a606d0eee0e
44 Ndb414bcbaf044c5ca0c3250400cde6e6
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638159
46 https://doi.org/10.1007/bf01659392
47 schema:sdDatePublished 2019-04-11T09:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N82644b9dd7154cf5b777be40faff48a8
50 schema:url http://link.springer.com/10.1007/BF01659392
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0edcd12b495d458783cb3b08b509bccb schema:name nlm_unique_id
55 schema:value 0360051
56 rdf:type schema:PropertyValue
57 N0f4a00c42e8a4b39ad97df703add2fbc schema:name readcube_id
58 schema:value a9c49476960b5372fd052f1d56ce53a8b0cd0573d27f2beedd326f8a9b37a6b8
59 rdf:type schema:PropertyValue
60 N163117f9ab3343fb81c807d66bc7d6e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Mutation
62 rdf:type schema:DefinedTerm
63 N184759cda6bd49b7b1533c952da4ac8e schema:volumeNumber 1
64 rdf:type schema:PublicationVolume
65 N272f03a1c8784ec0986e9556164c6575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Humans
67 rdf:type schema:DefinedTerm
68 N2870bc1be57141e4aad534289b308c76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Biological Evolution
70 rdf:type schema:DefinedTerm
71 N31418e2b9c5f4f5aa0659877ca732d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Protein Conformation
73 rdf:type schema:DefinedTerm
74 N6c759af4226a462ead57b32c0f859d00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Genetic Code
76 rdf:type schema:DefinedTerm
77 N7167d57420c54a11883c212ff1ee9e87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Genes
79 rdf:type schema:DefinedTerm
80 N749ab0c99df84647873b77de91cf6b47 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N82644b9dd7154cf5b777be40faff48a8 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N9ebae156a8e24907a39a9109038e6321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Cytochrome c Group
86 rdf:type schema:DefinedTerm
87 Nb252f316a91442e5b039d076c0d6dbe8 schema:name dimensions_id
88 schema:value pub.1035638159
89 rdf:type schema:PropertyValue
90 Nb5f0442dab0245d1b35071d5e1f3083d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Animals
92 rdf:type schema:DefinedTerm
93 Nbe7016ab189041f291486a606d0eee0e schema:name pubmed_id
94 schema:value 4377446
95 rdf:type schema:PropertyValue
96 Ncc4f4626e7184e6484b8dae3438a9dad rdf:first sg:person.01071211075.89
97 rdf:rest rdf:nil
98 Ndb414bcbaf044c5ca0c3250400cde6e6 schema:name doi
99 schema:value 10.1007/bf01659392
100 rdf:type schema:PropertyValue
101 Ne029f4a7abe34ab69d9c2bb7240c436e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Amino Acid Sequence
103 rdf:type schema:DefinedTerm
104 Nff940819195d41779a34354a4a68fb06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Hemoglobins
106 rdf:type schema:DefinedTerm
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biochemistry and Cell Biology
112 rdf:type schema:DefinedTerm
113 sg:journal.1016442 schema:issn 0022-2844
114 1432-1432
115 schema:name Journal of Molecular Evolution
116 rdf:type schema:Periodical
117 sg:person.01071211075.89 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
118 schema:familyName Dickerson
119 schema:givenName Richard E.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89
121 rdf:type schema:Person
122 sg:pub.10.1038/226237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026125494
123 https://doi.org/10.1038/226237a0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/scientificamerican0565-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056541863
126 https://doi.org/10.1038/scientificamerican0565-110
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1080174803 schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1081042727 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1081159613 schema:CreativeWork
131 https://doi.org/10.1016/0003-9861(67)90177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874310
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0012-8252(66)90040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036481966
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.50.4.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258434
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1558-5646.1968.tb03445.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085739129
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.1749-6632.1968.tb11901.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052040509
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.133.3459.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062475752
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.155.3760.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490443
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.161.3837.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062494874
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.164.3881.788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497053
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1146/annurev.bi.37.070168.003455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000620540
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
152 schema:name Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA
153 Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...