The structure of cytochromec and the rates of molecular evolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-03

AUTHORS

Richard E. Dickerson

ABSTRACT

The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles. More... »

PAGES

26-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01659392

DOI

http://dx.doi.org/10.1007/bf01659392

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035638159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4377446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome c Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA", 
            "Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dickerson", 
        "givenName": "Richard E.", 
        "id": "sg:person.01071211075.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.bi.37.070168.003455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000620540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.50.4.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001258434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-9861(67)90177-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007874310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/226237a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026125494", 
          "https://doi.org/10.1038/226237a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(66)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(66)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1968.tb11901.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052040509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0565-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056541863", 
          "https://doi.org/10.1038/scientificamerican0565-110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.133.3459.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062475752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.155.3760.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.161.3837.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062494874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.164.3881.788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062497053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080174803", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081042727", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081159613", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1968.tb03445.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085739129"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-03", 
    "datePublishedReg": "1971-03-01", 
    "description": "The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic \u201cchannels\u201d leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01659392", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "The structure of cytochromec and the rates of molecular evolution", 
    "pagination": "26-45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9c49476960b5372fd052f1d56ce53a8b0cd0573d27f2beedd326f8a9b37a6b8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4377446"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01659392"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035638159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01659392", 
      "https://app.dimensions.ai/details/publication/pub.1035638159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47976_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01659392"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01659392 schema:about N2f40769d8f5c49f180532fb7490851e4
2 N402e2a97a8634b3ab96578022bfe93e3
3 N4ff0039a00da4ea9ba14200e7d055b54
4 N5ba757e016ef4d738f9acb39f7f7fb11
5 N5bd707342d98451f801b48fe2faff4f8
6 N666279814fc34b8491c5799bce7445b7
7 N7d7e8bdac702479084e6c4134b4e6d9f
8 Nc8816400d80749c5a19e13c82f9f19f9
9 Ndbd42aa19d574c179dd39b72d0e17bab
10 Nddd2b07dc1cf4941a9b68e9180cc7a9f
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N449243b2c3814cc6baab260f5dfdfea5
14 schema:citation sg:pub.10.1038/226237a0
15 sg:pub.10.1038/scientificamerican0565-110
16 https://app.dimensions.ai/details/publication/pub.1080174803
17 https://app.dimensions.ai/details/publication/pub.1081042727
18 https://app.dimensions.ai/details/publication/pub.1081159613
19 https://doi.org/10.1016/0003-9861(67)90177-4
20 https://doi.org/10.1016/0012-8252(66)90040-7
21 https://doi.org/10.1073/pnas.50.4.672
22 https://doi.org/10.1111/j.1558-5646.1968.tb03445.x
23 https://doi.org/10.1111/j.1749-6632.1968.tb11901.x
24 https://doi.org/10.1126/science.133.3459.1105
25 https://doi.org/10.1126/science.155.3760.279
26 https://doi.org/10.1126/science.161.3837.165
27 https://doi.org/10.1126/science.164.3881.788
28 https://doi.org/10.1146/annurev.bi.37.070168.003455
29 schema:datePublished 1971-03
30 schema:datePublishedReg 1971-03-01
31 schema:description The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N25a848391fee40ea90caf73280ea9022
36 Nb8f27cd59a984202a5bb6c6d65b302f2
37 sg:journal.1016442
38 schema:name The structure of cytochromec and the rates of molecular evolution
39 schema:pagination 26-45
40 schema:productId N06e2703a99984be1872ca05c69dc804f
41 N56e20fdf42084aa1841557f7cdce0ef4
42 N5da65a0293d24a66b3fe1c32d77d285e
43 Na6afe13fa8084c7b9474dce3516696af
44 Nde46363d726a41debbeefc0f88d4f8df
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638159
46 https://doi.org/10.1007/bf01659392
47 schema:sdDatePublished 2019-04-11T09:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N85a3a18369be46328d58ee3ba2ccce86
50 schema:url http://link.springer.com/10.1007/BF01659392
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N06e2703a99984be1872ca05c69dc804f schema:name dimensions_id
55 schema:value pub.1035638159
56 rdf:type schema:PropertyValue
57 N25a848391fee40ea90caf73280ea9022 schema:volumeNumber 1
58 rdf:type schema:PublicationVolume
59 N2f40769d8f5c49f180532fb7490851e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Amino Acid Sequence
61 rdf:type schema:DefinedTerm
62 N402e2a97a8634b3ab96578022bfe93e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Genetic Code
64 rdf:type schema:DefinedTerm
65 N449243b2c3814cc6baab260f5dfdfea5 rdf:first sg:person.01071211075.89
66 rdf:rest rdf:nil
67 N4ff0039a00da4ea9ba14200e7d055b54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Animals
69 rdf:type schema:DefinedTerm
70 N56e20fdf42084aa1841557f7cdce0ef4 schema:name nlm_unique_id
71 schema:value 0360051
72 rdf:type schema:PropertyValue
73 N5ba757e016ef4d738f9acb39f7f7fb11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Cytochrome c Group
75 rdf:type schema:DefinedTerm
76 N5bd707342d98451f801b48fe2faff4f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Hemoglobins
78 rdf:type schema:DefinedTerm
79 N5da65a0293d24a66b3fe1c32d77d285e schema:name doi
80 schema:value 10.1007/bf01659392
81 rdf:type schema:PropertyValue
82 N666279814fc34b8491c5799bce7445b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Protein Conformation
84 rdf:type schema:DefinedTerm
85 N7d7e8bdac702479084e6c4134b4e6d9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Biological Evolution
87 rdf:type schema:DefinedTerm
88 N85a3a18369be46328d58ee3ba2ccce86 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Na6afe13fa8084c7b9474dce3516696af schema:name readcube_id
91 schema:value a9c49476960b5372fd052f1d56ce53a8b0cd0573d27f2beedd326f8a9b37a6b8
92 rdf:type schema:PropertyValue
93 Nb8f27cd59a984202a5bb6c6d65b302f2 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 Nc8816400d80749c5a19e13c82f9f19f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Genes
97 rdf:type schema:DefinedTerm
98 Ndbd42aa19d574c179dd39b72d0e17bab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 Nddd2b07dc1cf4941a9b68e9180cc7a9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Mutation
103 rdf:type schema:DefinedTerm
104 Nde46363d726a41debbeefc0f88d4f8df schema:name pubmed_id
105 schema:value 4377446
106 rdf:type schema:PropertyValue
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biochemistry and Cell Biology
112 rdf:type schema:DefinedTerm
113 sg:journal.1016442 schema:issn 0022-2844
114 1432-1432
115 schema:name Journal of Molecular Evolution
116 rdf:type schema:Periodical
117 sg:person.01071211075.89 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
118 schema:familyName Dickerson
119 schema:givenName Richard E.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89
121 rdf:type schema:Person
122 sg:pub.10.1038/226237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026125494
123 https://doi.org/10.1038/226237a0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/scientificamerican0565-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056541863
126 https://doi.org/10.1038/scientificamerican0565-110
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1080174803 schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1081042727 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1081159613 schema:CreativeWork
131 https://doi.org/10.1016/0003-9861(67)90177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874310
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0012-8252(66)90040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036481966
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.50.4.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258434
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1558-5646.1968.tb03445.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085739129
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.1749-6632.1968.tb11901.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052040509
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.133.3459.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062475752
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.155.3760.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490443
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.161.3837.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062494874
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.164.3881.788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497053
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1146/annurev.bi.37.070168.003455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000620540
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
152 schema:name Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA
153 Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...