The structure of cytochromec and the rates of molecular evolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-03

AUTHORS

Richard E. Dickerson

ABSTRACT

The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles. More... »

PAGES

26-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01659392

DOI

http://dx.doi.org/10.1007/bf01659392

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035638159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4377446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome c Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA", 
            "Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dickerson", 
        "givenName": "Richard E.", 
        "id": "sg:person.01071211075.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.bi.37.070168.003455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000620540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.50.4.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001258434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-9861(67)90177-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007874310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/226237a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026125494", 
          "https://doi.org/10.1038/226237a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(66)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-8252(66)90040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1968.tb11901.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052040509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0565-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056541863", 
          "https://doi.org/10.1038/scientificamerican0565-110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.133.3459.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062475752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.155.3760.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.161.3837.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062494874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.164.3881.788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062497053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080174803", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081042727", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081159613", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1968.tb03445.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085739129"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-03", 
    "datePublishedReg": "1971-03-01", 
    "description": "The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic \u201cchannels\u201d leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01659392", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "The structure of cytochromec and the rates of molecular evolution", 
    "pagination": "26-45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9c49476960b5372fd052f1d56ce53a8b0cd0573d27f2beedd326f8a9b37a6b8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4377446"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01659392"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035638159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01659392", 
      "https://app.dimensions.ai/details/publication/pub.1035638159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47976_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01659392"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01659392 schema:about N1074187016804e7498d127edce045c5f
2 N17bd536d1a4a4047a6d36bfcc5f37ea4
3 N28fcd7cbae1e4b41ab0b97c03971df73
4 N5984acb2ccae4e5ca4d2eba8e252d883
5 Na9dac872e0834f7aaf376f678bc1163e
6 Nb2410ba3954443ac8c162f81876f976e
7 Nb3fe499353984d42a6ab6987adedad7e
8 Nc673918c84f64e16baec0f0ea45533b8
9 Nccde94b7f57e49389459120e307d9bfb
10 Ndad2da7087584b1296d360690f09dc17
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N25d5eb68cae247448473379a50c65f32
14 schema:citation sg:pub.10.1038/226237a0
15 sg:pub.10.1038/scientificamerican0565-110
16 https://app.dimensions.ai/details/publication/pub.1080174803
17 https://app.dimensions.ai/details/publication/pub.1081042727
18 https://app.dimensions.ai/details/publication/pub.1081159613
19 https://doi.org/10.1016/0003-9861(67)90177-4
20 https://doi.org/10.1016/0012-8252(66)90040-7
21 https://doi.org/10.1073/pnas.50.4.672
22 https://doi.org/10.1111/j.1558-5646.1968.tb03445.x
23 https://doi.org/10.1111/j.1749-6632.1968.tb11901.x
24 https://doi.org/10.1126/science.133.3459.1105
25 https://doi.org/10.1126/science.155.3760.279
26 https://doi.org/10.1126/science.161.3837.165
27 https://doi.org/10.1126/science.164.3881.788
28 https://doi.org/10.1146/annurev.bi.37.070168.003455
29 schema:datePublished 1971-03
30 schema:datePublishedReg 1971-03-01
31 schema:description The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface. The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size. The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N40ecfa9786ad4ac7866061fbf848e5c8
36 Nf92ccd24bb134142b15ea73380ef26fb
37 sg:journal.1016442
38 schema:name The structure of cytochromec and the rates of molecular evolution
39 schema:pagination 26-45
40 schema:productId N36617c9bde5e462cb82fe27bc297c7ec
41 N3fb1bb4ca03a45ee86ce14795bd927c6
42 N434a07c02e5242c68843ace1dc67d80a
43 N753f322c0b3a4e18bd1768fd123956db
44 Nd990e76cb8ff4c8a9b0564d461b0742d
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638159
46 https://doi.org/10.1007/bf01659392
47 schema:sdDatePublished 2019-04-11T09:11
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nd20687d194334035aef0643bd4f05ac4
50 schema:url http://link.springer.com/10.1007/BF01659392
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1074187016804e7498d127edce045c5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Mutation
56 rdf:type schema:DefinedTerm
57 N17bd536d1a4a4047a6d36bfcc5f37ea4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Genes
59 rdf:type schema:DefinedTerm
60 N25d5eb68cae247448473379a50c65f32 rdf:first sg:person.01071211075.89
61 rdf:rest rdf:nil
62 N28fcd7cbae1e4b41ab0b97c03971df73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Amino Acid Sequence
64 rdf:type schema:DefinedTerm
65 N36617c9bde5e462cb82fe27bc297c7ec schema:name pubmed_id
66 schema:value 4377446
67 rdf:type schema:PropertyValue
68 N3fb1bb4ca03a45ee86ce14795bd927c6 schema:name nlm_unique_id
69 schema:value 0360051
70 rdf:type schema:PropertyValue
71 N40ecfa9786ad4ac7866061fbf848e5c8 schema:volumeNumber 1
72 rdf:type schema:PublicationVolume
73 N434a07c02e5242c68843ace1dc67d80a schema:name readcube_id
74 schema:value a9c49476960b5372fd052f1d56ce53a8b0cd0573d27f2beedd326f8a9b37a6b8
75 rdf:type schema:PropertyValue
76 N5984acb2ccae4e5ca4d2eba8e252d883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N753f322c0b3a4e18bd1768fd123956db schema:name doi
80 schema:value 10.1007/bf01659392
81 rdf:type schema:PropertyValue
82 Na9dac872e0834f7aaf376f678bc1163e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Protein Conformation
84 rdf:type schema:DefinedTerm
85 Nb2410ba3954443ac8c162f81876f976e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Animals
87 rdf:type schema:DefinedTerm
88 Nb3fe499353984d42a6ab6987adedad7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Biological Evolution
90 rdf:type schema:DefinedTerm
91 Nc673918c84f64e16baec0f0ea45533b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Genetic Code
93 rdf:type schema:DefinedTerm
94 Nccde94b7f57e49389459120e307d9bfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Cytochrome c Group
96 rdf:type schema:DefinedTerm
97 Nd20687d194334035aef0643bd4f05ac4 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nd990e76cb8ff4c8a9b0564d461b0742d schema:name dimensions_id
100 schema:value pub.1035638159
101 rdf:type schema:PropertyValue
102 Ndad2da7087584b1296d360690f09dc17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Hemoglobins
104 rdf:type schema:DefinedTerm
105 Nf92ccd24bb134142b15ea73380ef26fb schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biochemistry and Cell Biology
112 rdf:type schema:DefinedTerm
113 sg:journal.1016442 schema:issn 0022-2844
114 1432-1432
115 schema:name Journal of Molecular Evolution
116 rdf:type schema:Periodical
117 sg:person.01071211075.89 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
118 schema:familyName Dickerson
119 schema:givenName Richard E.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89
121 rdf:type schema:Person
122 sg:pub.10.1038/226237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026125494
123 https://doi.org/10.1038/226237a0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/scientificamerican0565-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056541863
126 https://doi.org/10.1038/scientificamerican0565-110
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1080174803 schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1081042727 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1081159613 schema:CreativeWork
131 https://doi.org/10.1016/0003-9861(67)90177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874310
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0012-8252(66)90040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036481966
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.50.4.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258434
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1558-5646.1968.tb03445.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085739129
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.1749-6632.1968.tb11901.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052040509
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.133.3459.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062475752
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.155.3760.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490443
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.161.3837.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062494874
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.164.3881.788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497053
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1146/annurev.bi.37.070168.003455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000620540
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
152 schema:name Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA
153 Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...