The structure of cytochromec and the rates of molecular evolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-03

AUTHORS

Richard E. Dickerson

ABSTRACT

The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface.The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size.The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles. More... »

PAGES

26-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01659392

DOI

http://dx.doi.org/10.1007/bf01659392

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035638159

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4377446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome c Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA", 
            "Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dickerson", 
        "givenName": "Richard E.", 
        "id": "sg:person.01071211075.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/226237a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026125494", 
          "https://doi.org/10.1038/226237a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0565-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056541863", 
          "https://doi.org/10.1038/scientificamerican0565-110"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-03", 
    "datePublishedReg": "1971-03-01", 
    "description": "The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic \u201cchannels\u201d leading from the interior to the surface.The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size.The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01659392", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "amino acid sequence", 
      "acid sequence", 
      "biological role", 
      "large macromolecular complexes", 
      "protein's biological role", 
      "rate of evolution", 
      "evolutionary conservation", 
      "molecular evolution", 
      "evolutionary conservatism", 
      "acidic side chains", 
      "functioning protein", 
      "macromolecular complexes", 
      "aromatic side chains", 
      "side chains", 
      "globin", 
      "protein", 
      "sequence", 
      "cytochromec", 
      "conservation", 
      "enzyme", 
      "molecular surface", 
      "structure analysis", 
      "similar size", 
      "genome", 
      "cytochromesc", 
      "species", 
      "reductase", 
      "mutations", 
      "slower rate", 
      "evolution", 
      "lysine", 
      "random changes", 
      "oxidase", 
      "positive charge", 
      "glycine", 
      "complexes", 
      "chain", 
      "molecules", 
      "changes", 
      "observed rate", 
      "X-ray structure analysis", 
      "role", 
      "interaction", 
      "structure", 
      "character", 
      "portion", 
      "occurrence", 
      "rate", 
      "conservatism", 
      "interior", 
      "fibrinopeptide", 
      "analysis", 
      "comparison", 
      "size", 
      "negative character", 
      "channels", 
      "surface", 
      "surface structure", 
      "features", 
      "ferricytochromec", 
      "surface features", 
      "rate of occurrence", 
      "reasons", 
      "probability", 
      "terms", 
      "charge"
    ], 
    "name": "The structure of cytochromec and the rates of molecular evolution", 
    "pagination": "26-45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035638159"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01659392"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4377446"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01659392", 
      "https://app.dimensions.ai/details/publication/pub.1035638159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_147.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01659392"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01659392'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      105 URIs      94 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01659392 schema:about N42b66059892e47be9b21fac2200e89b3
2 N6a587915647743fd9ba3175ce24b1f9e
3 N8c982560b1dd48e5a2762d3795e6e10f
4 N9ca9013ccd324bee9ee9ac4fb65735e3
5 Na78472fe95994c1cb68c627919703347
6 Nb1fd82305015409198248a7be397b14d
7 Nbbb629e63c374ffc824102a8b5bf311b
8 Nbe121fa698ef42338df0269bfa9b3259
9 Nc7abcacad4c64da18c6835ad535fad71
10 Nf852935c32414603990a690d2f75851d
11 anzsrc-for:06
12 anzsrc-for:0601
13 anzsrc-for:0604
14 schema:author Nf445f7d02a3d4425af6a7031e7196647
15 schema:citation sg:pub.10.1038/226237a0
16 sg:pub.10.1038/scientificamerican0565-110
17 schema:datePublished 1971-03
18 schema:datePublishedReg 1971-03-01
19 schema:description The x-ray structure analysis of ferricytochromec shows the reasons for the evolutionary conservatism of hydrophobic and aromatic side chains, lysines, and glycines, which had been observed from comparisons of amino acid sequences from over 30 species. It also shows that the negative character of one portion of the molecular surface is conserved, even though individual acidic side chains are not, and that positive charges are localized around two hydrophobic “channels” leading from the interior to the surface.The reason for the unusual evolutionary conservation of surface features in cytochromesc is probably the interaction of the molecule with two other large macromolecular complexes, its reductase and oxidase. This conservation of surface structure also explains the relatively slow rate of change of cytochromec sequences in comparison with the globins and enzymes of similar size.The rate of evolution of a protein is the rate of occurrence of mutations in the genome modified by the probability that a random change in amino acid sequence will be tolerable in a functioning protein. The observed rates of change in fibrinopeptides, the globins, cytochromec, and several enzymes are interpreted in terms of the proteins' biological roles.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N6bd9a977128942a18bcf40c3cf57d3d3
23 Ne3440305ee364678a1f2e2c4b9111c2b
24 sg:journal.1016442
25 schema:keywords X-ray structure analysis
26 acid sequence
27 acidic side chains
28 amino acid sequence
29 analysis
30 aromatic side chains
31 biological role
32 chain
33 changes
34 channels
35 character
36 charge
37 comparison
38 complexes
39 conservation
40 conservatism
41 cytochromec
42 cytochromesc
43 enzyme
44 evolution
45 evolutionary conservation
46 evolutionary conservatism
47 features
48 ferricytochromec
49 fibrinopeptide
50 functioning protein
51 genome
52 globin
53 glycine
54 interaction
55 interior
56 large macromolecular complexes
57 lysine
58 macromolecular complexes
59 molecular evolution
60 molecular surface
61 molecules
62 mutations
63 negative character
64 observed rate
65 occurrence
66 oxidase
67 portion
68 positive charge
69 probability
70 protein
71 protein's biological role
72 random changes
73 rate
74 rate of evolution
75 rate of occurrence
76 reasons
77 reductase
78 role
79 sequence
80 side chains
81 similar size
82 size
83 slower rate
84 species
85 structure
86 structure analysis
87 surface
88 surface features
89 surface structure
90 terms
91 schema:name The structure of cytochromec and the rates of molecular evolution
92 schema:pagination 26-45
93 schema:productId N971fdac0915241a69f344f6e76bb579f
94 Na4fe677a4e3945b0b4bd1e370904f64a
95 Nc165f2b7214d4dbf8e517d8d8a002490
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638159
97 https://doi.org/10.1007/bf01659392
98 schema:sdDatePublished 2022-12-01T06:18
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Nfbf5c3f226a44d638992f75135063b3d
101 schema:url https://doi.org/10.1007/bf01659392
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N42b66059892e47be9b21fac2200e89b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Amino Acid Sequence
107 rdf:type schema:DefinedTerm
108 N6a587915647743fd9ba3175ce24b1f9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Genes
110 rdf:type schema:DefinedTerm
111 N6bd9a977128942a18bcf40c3cf57d3d3 schema:volumeNumber 1
112 rdf:type schema:PublicationVolume
113 N8c982560b1dd48e5a2762d3795e6e10f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 N971fdac0915241a69f344f6e76bb579f schema:name doi
117 schema:value 10.1007/bf01659392
118 rdf:type schema:PropertyValue
119 N9ca9013ccd324bee9ee9ac4fb65735e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Hemoglobins
121 rdf:type schema:DefinedTerm
122 Na4fe677a4e3945b0b4bd1e370904f64a schema:name dimensions_id
123 schema:value pub.1035638159
124 rdf:type schema:PropertyValue
125 Na78472fe95994c1cb68c627919703347 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Mutation
127 rdf:type schema:DefinedTerm
128 Nb1fd82305015409198248a7be397b14d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Cytochrome c Group
130 rdf:type schema:DefinedTerm
131 Nbbb629e63c374ffc824102a8b5bf311b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Protein Conformation
133 rdf:type schema:DefinedTerm
134 Nbe121fa698ef42338df0269bfa9b3259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Animals
136 rdf:type schema:DefinedTerm
137 Nc165f2b7214d4dbf8e517d8d8a002490 schema:name pubmed_id
138 schema:value 4377446
139 rdf:type schema:PropertyValue
140 Nc7abcacad4c64da18c6835ad535fad71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Genetic Code
142 rdf:type schema:DefinedTerm
143 Ne3440305ee364678a1f2e2c4b9111c2b schema:issueNumber 1
144 rdf:type schema:PublicationIssue
145 Nf445f7d02a3d4425af6a7031e7196647 rdf:first sg:person.01071211075.89
146 rdf:rest rdf:nil
147 Nf852935c32414603990a690d2f75851d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Biological Evolution
149 rdf:type schema:DefinedTerm
150 Nfbf5c3f226a44d638992f75135063b3d schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biochemistry and Cell Biology
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 sg:journal.1016442 schema:issn 0022-2844
162 1432-1432
163 schema:name Journal of Molecular Evolution
164 schema:publisher Springer Nature
165 rdf:type schema:Periodical
166 sg:person.01071211075.89 schema:affiliation grid-institutes:grid.20861.3d
167 schema:familyName Dickerson
168 schema:givenName Richard E.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071211075.89
170 rdf:type schema:Person
171 sg:pub.10.1038/226237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026125494
172 https://doi.org/10.1038/226237a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/scientificamerican0565-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056541863
175 https://doi.org/10.1038/scientificamerican0565-110
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.20861.3d schema:alternateName Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA
178 schema:name Division of Chemistry and Chemical Engineering, California Institute of Technology, 91109, Pasadena, Calif., USA
179 Norman W. Church Laboratory of Chemical Biology, California Institute of Technology, 91109, Pasadena, California, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...