Zero-mass infinite spin representations of the Poincaré group and quantum field theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-09

AUTHORS

Jakob Yngvason

ABSTRACT

It is shown that a local quantized field with a manifestly covariant transformation law under the Poincaré group cannot have nonvanishing matrix elements between the vacuum and an irreducible subspace of zero mass and infinite spin.

PAGES

195-203

References to SciGraph publications

  • 1967-06. On the connection between analyticity and lorentz covariance of wightman functions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1948-07. Relativistische Wellengleichungen in ZEITSCHRIFT FÜR PHYSIK
  • Journal

    TITLE

    Communications in Mathematical Physics

    ISSUE

    3

    VOLUME

    18

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01649432

    DOI

    http://dx.doi.org/10.1007/bf01649432

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030175475


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yngvason", 
            "givenName": "Jakob", 
            "id": "sg:person.010611416245.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010611416245.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01654126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021510135", 
              "https://doi.org/10.1007/bf01654126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01654126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021510135", 
              "https://doi.org/10.1007/bf01654126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01668901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041267045", 
              "https://doi.org/10.1007/bf01668901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1965.0104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052245932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.133.b1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.133.b1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.166.1302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060437455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.166.1302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060437455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1968551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069673975"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1970-09", 
        "datePublishedReg": "1970-09-01", 
        "description": "It is shown that a local quantized field with a manifestly covariant transformation law under the Poincar\u00e9 group cannot have nonvanishing matrix elements between the vacuum and an irreducible subspace of zero mass and infinite spin.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01649432", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Zero-mass infinite spin representations of the Poincar\u00e9 group and quantum field theory", 
        "pagination": "195-203", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8fc0989783f9b00e4fd1c6adf853ae15f2821367ac27d12fd35bd657290c55fa"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01649432"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030175475"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01649432", 
          "https://app.dimensions.ai/details/publication/pub.1030175475"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47994_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01649432"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01649432'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01649432'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01649432'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01649432'


     

    This table displays all metadata directly associated to this object as RDF triples.

    72 TRIPLES      20 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01649432 schema:author Nf71a86ae1529411e84062d76441fe354
    2 schema:citation sg:pub.10.1007/bf01654126
    3 sg:pub.10.1007/bf01668901
    4 https://doi.org/10.1098/rspa.1965.0104
    5 https://doi.org/10.1103/physrev.133.b1318
    6 https://doi.org/10.1103/physrev.166.1302
    7 https://doi.org/10.2307/1968551
    8 schema:datePublished 1970-09
    9 schema:datePublishedReg 1970-09-01
    10 schema:description It is shown that a local quantized field with a manifestly covariant transformation law under the Poincaré group cannot have nonvanishing matrix elements between the vacuum and an irreducible subspace of zero mass and infinite spin.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N4b3cac68e92741b482c3719457ffaf24
    15 N742652a7b91c4e1484d389e7655ae2dc
    16 sg:journal.1136216
    17 schema:name Zero-mass infinite spin representations of the Poincaré group and quantum field theory
    18 schema:pagination 195-203
    19 schema:productId N8f43e27c805f435b84775d4514e4ec95
    20 Nf781b14e00cb4a229be96c20059ea03e
    21 Nf8cce27c45f84dcb94a287576787a35b
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030175475
    23 https://doi.org/10.1007/bf01649432
    24 schema:sdDatePublished 2019-04-11T09:13
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N62bdda33662a4137b0b2e251c87eede1
    27 schema:url http://link.springer.com/10.1007/BF01649432
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N4b3cac68e92741b482c3719457ffaf24 schema:issueNumber 3
    32 rdf:type schema:PublicationIssue
    33 N4dded2207b6647bda47b283eea6d3cc4 schema:name Institut für Theoretische Physik, Universität Göttingen, Germany
    34 rdf:type schema:Organization
    35 N62bdda33662a4137b0b2e251c87eede1 schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N742652a7b91c4e1484d389e7655ae2dc schema:volumeNumber 18
    38 rdf:type schema:PublicationVolume
    39 N8f43e27c805f435b84775d4514e4ec95 schema:name doi
    40 schema:value 10.1007/bf01649432
    41 rdf:type schema:PropertyValue
    42 Nf71a86ae1529411e84062d76441fe354 rdf:first sg:person.010611416245.55
    43 rdf:rest rdf:nil
    44 Nf781b14e00cb4a229be96c20059ea03e schema:name dimensions_id
    45 schema:value pub.1030175475
    46 rdf:type schema:PropertyValue
    47 Nf8cce27c45f84dcb94a287576787a35b schema:name readcube_id
    48 schema:value 8fc0989783f9b00e4fd1c6adf853ae15f2821367ac27d12fd35bd657290c55fa
    49 rdf:type schema:PropertyValue
    50 sg:journal.1136216 schema:issn 0010-3616
    51 1432-0916
    52 schema:name Communications in Mathematical Physics
    53 rdf:type schema:Periodical
    54 sg:person.010611416245.55 schema:affiliation N4dded2207b6647bda47b283eea6d3cc4
    55 schema:familyName Yngvason
    56 schema:givenName Jakob
    57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010611416245.55
    58 rdf:type schema:Person
    59 sg:pub.10.1007/bf01654126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021510135
    60 https://doi.org/10.1007/bf01654126
    61 rdf:type schema:CreativeWork
    62 sg:pub.10.1007/bf01668901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041267045
    63 https://doi.org/10.1007/bf01668901
    64 rdf:type schema:CreativeWork
    65 https://doi.org/10.1098/rspa.1965.0104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052245932
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1103/physrev.133.b1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428247
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1103/physrev.166.1302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437455
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
    72 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...