On the Korteweg-de Vries equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-01

AUTHORS

Tosio Kato

ABSTRACT

Existence, uniqueness, and continuous dependence on the initial data are proved for the local (in time) solution of the (generalized) Korteweg-de Vries equation on the real line, with the initial function ϕ in the Sobolev space of order s>3/2 and the solution u(t) staying in the same space, s=∞ being included For the proper KdV equation, existence of global solutions follows if s≥2. The proof is based on the theory of abstract quasilinear evolution equations developed elsewhere. More... »

PAGES

89-99

References to SciGraph publications

  • 1976-03. Remarks on the Korteweg-de Vries equation in ISRAEL JOURNAL OF MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01647967

    DOI

    http://dx.doi.org/10.1007/bf01647967

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039529393


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kato", 
            "givenName": "Tosio", 
            "id": "sg:person.0672636204.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/03605307608820022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003669962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02761431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010575981", 
              "https://doi.org/10.1007/bf02761431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1975.0035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011191517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-76-04309-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064418792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-78-04511-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064418905"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-01", 
        "datePublishedReg": "1979-01-01", 
        "description": "Existence, uniqueness, and continuous dependence on the initial data are proved for the local (in time) solution of the (generalized) Korteweg-de Vries equation on the real line, with the initial function \u03d5 in the Sobolev space of order s>3/2 and the solution u(t) staying in the same space, s=\u221e being included For the proper KdV equation, existence of global solutions follows if s\u22652. The proof is based on the theory of abstract quasilinear evolution equations developed elsewhere.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01647967", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136220", 
            "issn": [
              "0025-2611", 
              "1432-1785"
            ], 
            "name": "manuscripta mathematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "On the Korteweg-de Vries equation", 
        "pagination": "89-99", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bc4cd1295468d5d2c0f755c8c669fcdc8df0ed89a516d111785b8ac96745e704"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01647967"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039529393"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01647967", 
          "https://app.dimensions.ai/details/publication/pub.1039529393"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47967_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01647967"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01647967 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8e26e9a0aa674aac84e4d3e7eb182a56
    4 schema:citation sg:pub.10.1007/bf02761431
    5 https://doi.org/10.1080/03605307608820022
    6 https://doi.org/10.1098/rsta.1975.0035
    7 https://doi.org/10.1215/s0012-7094-76-04309-x
    8 https://doi.org/10.1215/s0012-7094-78-04511-8
    9 schema:datePublished 1979-01
    10 schema:datePublishedReg 1979-01-01
    11 schema:description Existence, uniqueness, and continuous dependence on the initial data are proved for the local (in time) solution of the (generalized) Korteweg-de Vries equation on the real line, with the initial function ϕ in the Sobolev space of order s>3/2 and the solution u(t) staying in the same space, s=∞ being included For the proper KdV equation, existence of global solutions follows if s≥2. The proof is based on the theory of abstract quasilinear evolution equations developed elsewhere.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N94c1fe502d424fc4bcd27a9de4ce3c9a
    16 Nc96a331a96ed48bbaf2c3ddb1b7b33df
    17 sg:journal.1136220
    18 schema:name On the Korteweg-de Vries equation
    19 schema:pagination 89-99
    20 schema:productId N9064656bf05647cda34dea5ca02fc133
    21 Naf24f9f0463345c3baa97eae47b62429
    22 Nf5600b28612b4755b7d666682cbaa409
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039529393
    24 https://doi.org/10.1007/bf01647967
    25 schema:sdDatePublished 2019-04-11T09:10
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nd6df5c84c7c24348a9a89e0c6238b67d
    28 schema:url http://link.springer.com/10.1007/BF01647967
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N8e26e9a0aa674aac84e4d3e7eb182a56 rdf:first sg:person.0672636204.67
    33 rdf:rest rdf:nil
    34 N9064656bf05647cda34dea5ca02fc133 schema:name dimensions_id
    35 schema:value pub.1039529393
    36 rdf:type schema:PropertyValue
    37 N94c1fe502d424fc4bcd27a9de4ce3c9a schema:issueNumber 1-3
    38 rdf:type schema:PublicationIssue
    39 Naf24f9f0463345c3baa97eae47b62429 schema:name doi
    40 schema:value 10.1007/bf01647967
    41 rdf:type schema:PropertyValue
    42 Nc96a331a96ed48bbaf2c3ddb1b7b33df schema:volumeNumber 28
    43 rdf:type schema:PublicationVolume
    44 Nd6df5c84c7c24348a9a89e0c6238b67d schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 Nf5600b28612b4755b7d666682cbaa409 schema:name readcube_id
    47 schema:value bc4cd1295468d5d2c0f755c8c669fcdc8df0ed89a516d111785b8ac96745e704
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Pure Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136220 schema:issn 0025-2611
    56 1432-1785
    57 schema:name manuscripta mathematica
    58 rdf:type schema:Periodical
    59 sg:person.0672636204.67 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    60 schema:familyName Kato
    61 schema:givenName Tosio
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf02761431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010575981
    65 https://doi.org/10.1007/bf02761431
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1080/03605307608820022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003669962
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1098/rsta.1975.0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191517
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1215/s0012-7094-76-04309-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418792
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1215/s0012-7094-78-04511-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418905
    74 rdf:type schema:CreativeWork
    75 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    76 schema:name Department of Mathematics, University of California, 94720, Berkeley, CA, USA
    77 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...