1979-01
AUTHORS ABSTRACTExistence, uniqueness, and continuous dependence on the initial data are proved for the local (in time) solution of the (generalized) Korteweg-de Vries equation on the real line, with the initial function ϕ in the Sobolev space of order s>3/2 and the solution u(t) staying in the same space, s=∞ being included For the proper KdV equation, existence of global solutions follows if s≥2. The proof is based on the theory of abstract quasilinear evolution equations developed elsewhere. More... »
PAGES89-99
http://scigraph.springernature.com/pub.10.1007/bf01647967
DOIhttp://dx.doi.org/10.1007/bf01647967
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039529393
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Berkeley",
"id": "https://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Department of Mathematics, University of California, 94720, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Kato",
"givenName": "Tosio",
"id": "sg:person.0672636204.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672636204.67"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/03605307608820022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003669962"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02761431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010575981",
"https://doi.org/10.1007/bf02761431"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rsta.1975.0035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011191517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/s0012-7094-76-04309-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064418792"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/s0012-7094-78-04511-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064418905"
],
"type": "CreativeWork"
}
],
"datePublished": "1979-01",
"datePublishedReg": "1979-01-01",
"description": "Existence, uniqueness, and continuous dependence on the initial data are proved for the local (in time) solution of the (generalized) Korteweg-de Vries equation on the real line, with the initial function \u03d5 in the Sobolev space of order s>3/2 and the solution u(t) staying in the same space, s=\u221e being included For the proper KdV equation, existence of global solutions follows if s\u22652. The proof is based on the theory of abstract quasilinear evolution equations developed elsewhere.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf01647967",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136220",
"issn": [
"0025-2611",
"1432-1785"
],
"name": "manuscripta mathematica",
"type": "Periodical"
},
{
"issueNumber": "1-3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "28"
}
],
"name": "On the Korteweg-de Vries equation",
"pagination": "89-99",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"bc4cd1295468d5d2c0f755c8c669fcdc8df0ed89a516d111785b8ac96745e704"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01647967"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039529393"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01647967",
"https://app.dimensions.ai/details/publication/pub.1039529393"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47967_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF01647967"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01647967'
This table displays all metadata directly associated to this object as RDF triples.
77 TRIPLES
21 PREDICATES
32 URIs
19 LITERALS
7 BLANK NODES