A variational principle for black holes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1973-12

AUTHORS

S. W. Hawking

ABSTRACT

It is shown that the initial data which gives rise to stationary black hole solutions extremizes the mass for a given angular momentum and area of the horizon. The only extremum of the mass for a given area of the horizon but arbitrary angular momentum is the Schwarzschild solution. In this case, and when the angular momentum is small, the extremum of the mass is a local minimum. This suggests that the initial data for the Schwarzschild solution has a smaller mass than any other initial data with the same area of the horizon. If this is the case, there is no possibility of proving the occurrence of naked singularities by methods suggested by Penrose and Gibbons. Together with Carter's theorem, the fact that the extremum is a local minimum indicates that the Kerr solutions are stable against axisymmetric perturbations. More... »

PAGES

323-334

References to SciGraph publications

  • 1972-06. Black holes in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1972-06. The time symmetric initial value problem for black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1973-06. The four laws of black hole mechanics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1969-12. Global aspects of the Cauchy problem in general relativity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1972-12. Energy and angular momentum flow into a black hole in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01646744

    DOI

    http://dx.doi.org/10.1007/bf01646744

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050761926


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Astronomy, University of Cambridge, Cambridge, England", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Institute of Astronomy, University of Cambridge, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01645742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038501185", 
              "https://doi.org/10.1007/bf01645742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033358833", 
              "https://doi.org/10.1007/bf01645515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001058818", 
              "https://doi.org/10.1007/bf01645389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042906989", 
              "https://doi.org/10.1007/bf01877517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033858561", 
              "https://doi.org/10.1007/bf01645614"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1973-12", 
        "datePublishedReg": "1973-12-01", 
        "description": "It is shown that the initial data which gives rise to stationary black hole solutions extremizes the mass for a given angular momentum and area of the horizon. The only extremum of the mass for a given area of the horizon but arbitrary angular momentum is the Schwarzschild solution. In this case, and when the angular momentum is small, the extremum of the mass is a local minimum. This suggests that the initial data for the Schwarzschild solution has a smaller mass than any other initial data with the same area of the horizon. If this is the case, there is no possibility of proving the occurrence of naked singularities by methods suggested by Penrose and Gibbons. Together with Carter's theorem, the fact that the extremum is a local minimum indicates that the Kerr solutions are stable against axisymmetric perturbations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01646744", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "initial data", 
          "angular momentum", 
          "Schwarzschild solution", 
          "stationary black hole solutions", 
          "black hole solutions", 
          "local minima", 
          "arbitrary angular momentum", 
          "hole solutions", 
          "variational principle", 
          "Kerr solution", 
          "black holes", 
          "naked singularity", 
          "axisymmetric perturbations", 
          "theorem", 
          "extrema", 
          "momentum", 
          "solution", 
          "singularity", 
          "small mass", 
          "horizon", 
          "Penrose", 
          "perturbations", 
          "minimum", 
          "holes", 
          "principles", 
          "cases", 
          "mass", 
          "data", 
          "fact", 
          "possibility", 
          "gibbons", 
          "area", 
          "rise", 
          "same area", 
          "occurrence", 
          "method"
        ], 
        "name": "A variational principle for black holes", 
        "pagination": "323-334", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050761926"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01646744"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01646744", 
          "https://app.dimensions.ai/details/publication/pub.1050761926"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_121.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01646744"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01646744'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01646744'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01646744'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01646744'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      66 URIs      53 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01646744 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Ne33f388747e14821a36c06f02c4a60ca
    4 schema:citation sg:pub.10.1007/bf01645389
    5 sg:pub.10.1007/bf01645515
    6 sg:pub.10.1007/bf01645614
    7 sg:pub.10.1007/bf01645742
    8 sg:pub.10.1007/bf01877517
    9 schema:datePublished 1973-12
    10 schema:datePublishedReg 1973-12-01
    11 schema:description It is shown that the initial data which gives rise to stationary black hole solutions extremizes the mass for a given angular momentum and area of the horizon. The only extremum of the mass for a given area of the horizon but arbitrary angular momentum is the Schwarzschild solution. In this case, and when the angular momentum is small, the extremum of the mass is a local minimum. This suggests that the initial data for the Schwarzschild solution has a smaller mass than any other initial data with the same area of the horizon. If this is the case, there is no possibility of proving the occurrence of naked singularities by methods suggested by Penrose and Gibbons. Together with Carter's theorem, the fact that the extremum is a local minimum indicates that the Kerr solutions are stable against axisymmetric perturbations.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N2d876e37967d4b2bba4b96610b9dd6dc
    15 N66f217e20cf2440ca5a8c0602c17caa5
    16 sg:journal.1136216
    17 schema:keywords Kerr solution
    18 Penrose
    19 Schwarzschild solution
    20 angular momentum
    21 arbitrary angular momentum
    22 area
    23 axisymmetric perturbations
    24 black hole solutions
    25 black holes
    26 cases
    27 data
    28 extrema
    29 fact
    30 gibbons
    31 hole solutions
    32 holes
    33 horizon
    34 initial data
    35 local minima
    36 mass
    37 method
    38 minimum
    39 momentum
    40 naked singularity
    41 occurrence
    42 perturbations
    43 possibility
    44 principles
    45 rise
    46 same area
    47 singularity
    48 small mass
    49 solution
    50 stationary black hole solutions
    51 theorem
    52 variational principle
    53 schema:name A variational principle for black holes
    54 schema:pagination 323-334
    55 schema:productId N9bc290fe0c334b00b0112cebf0e369eb
    56 Ndf64caae267d41e3b9ccf63ce98ea8db
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050761926
    58 https://doi.org/10.1007/bf01646744
    59 schema:sdDatePublished 2022-12-01T06:17
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N13da0559d6184ebdba8b752ed6a6d138
    62 schema:url https://doi.org/10.1007/bf01646744
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N13da0559d6184ebdba8b752ed6a6d138 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N2d876e37967d4b2bba4b96610b9dd6dc schema:volumeNumber 33
    69 rdf:type schema:PublicationVolume
    70 N66f217e20cf2440ca5a8c0602c17caa5 schema:issueNumber 4
    71 rdf:type schema:PublicationIssue
    72 N9bc290fe0c334b00b0112cebf0e369eb schema:name dimensions_id
    73 schema:value pub.1050761926
    74 rdf:type schema:PropertyValue
    75 Ndf64caae267d41e3b9ccf63ce98ea8db schema:name doi
    76 schema:value 10.1007/bf01646744
    77 rdf:type schema:PropertyValue
    78 Ne33f388747e14821a36c06f02c4a60ca rdf:first sg:person.012212614165.22
    79 rdf:rest rdf:nil
    80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Physical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Astronomical and Space Sciences
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136216 schema:issn 0010-3616
    87 1432-0916
    88 schema:name Communications in Mathematical Physics
    89 schema:publisher Springer Nature
    90 rdf:type schema:Periodical
    91 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.5335.0
    92 schema:familyName Hawking
    93 schema:givenName S. W.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf01645389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001058818
    97 https://doi.org/10.1007/bf01645389
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01645515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033358833
    100 https://doi.org/10.1007/bf01645515
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01645614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033858561
    103 https://doi.org/10.1007/bf01645614
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01645742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501185
    106 https://doi.org/10.1007/bf01645742
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01877517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906989
    109 https://doi.org/10.1007/bf01877517
    110 rdf:type schema:CreativeWork
    111 grid-institutes:grid.5335.0 schema:alternateName Institute of Astronomy, University of Cambridge, Cambridge, England
    112 schema:name Institute of Astronomy, University of Cambridge, Cambridge, England
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...