The Bargmann-Wigner method in Galilean relativity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-06

AUTHORS

C. R. Hagen

ABSTRACT

The equations of motion of a spin one particle as derived from Levy-Leblond's Galilean formulation of the Bargmann-Wigner equations are examined. Although such an approach is possible for the case of free particles, inconsistencies which closely parallel those encountered in the Bargmann-Wigner equations of special relaticity are shown to occur upon the introduction of minimal electromagnetic coupling. If, however, one considers the vector meson within the Lagrangian formalism of totally symmetric multispinors, it is found that the ten components which describe the vector meson in Minkowski space reduce to seven for the Galilean group and that in this formulation no difficulty occurs for minimal electromagnetic coupling. More generally it is demonstrated that one can replace Levy-Leblond's version of the Bargmann-Wigner equations by an alternative set which leads to the correct number of variables for the vector meson. A final extension consists in the proof that for all values of the spin the (Lagrangian) multispinor formalism implies the Bargmann-Wigner equations. Thus the problem of special relativity of seeking a Lagrangian formulation of the Bargmann-Wigner set is found to have only a somewhat trivial counterpart in the Galilean case. More... »

PAGES

97-108

References to SciGraph publications

  • 1967-12. Nonrelativistic particles and wave equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1967-06. Galilean quantum field theories and a ghostless Lee model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01646089

    DOI

    http://dx.doi.org/10.1007/bf01646089

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025319682


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Rochester", 
              "id": "https://www.grid.ac/institutes/grid.16416.34", 
              "name": [
                "Department of Physics and Astronomy, University of Rochester, Rochester, New York"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hagen", 
            "givenName": "C. R.", 
            "id": "sg:person.015442003621.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442003621.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01646020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006856625", 
              "https://doi.org/10.1007/bf01646020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006856625", 
              "https://doi.org/10.1007/bf01646020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.34.5.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031506808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047586302", 
              "https://doi.org/10.1007/bf01645427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047586302", 
              "https://doi.org/10.1007/bf01645427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1724319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057791193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.139.b712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.139.b712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431306"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1970-06", 
        "datePublishedReg": "1970-06-01", 
        "description": "The equations of motion of a spin one particle as derived from Levy-Leblond's Galilean formulation of the Bargmann-Wigner equations are examined. Although such an approach is possible for the case of free particles, inconsistencies which closely parallel those encountered in the Bargmann-Wigner equations of special relaticity are shown to occur upon the introduction of minimal electromagnetic coupling. If, however, one considers the vector meson within the Lagrangian formalism of totally symmetric multispinors, it is found that the ten components which describe the vector meson in Minkowski space reduce to seven for the Galilean group and that in this formulation no difficulty occurs for minimal electromagnetic coupling. More generally it is demonstrated that one can replace Levy-Leblond's version of the Bargmann-Wigner equations by an alternative set which leads to the correct number of variables for the vector meson. A final extension consists in the proof that for all values of the spin the (Lagrangian) multispinor formalism implies the Bargmann-Wigner equations. Thus the problem of special relativity of seeking a Lagrangian formulation of the Bargmann-Wigner set is found to have only a somewhat trivial counterpart in the Galilean case.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01646089", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "The Bargmann-Wigner method in Galilean relativity", 
        "pagination": "97-108", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "789f7ef181c8392bf3ddd891bc914b267b7de091c0c3a8fc1cd22e2dee46e1e9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01646089"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025319682"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01646089", 
          "https://app.dimensions.ai/details/publication/pub.1025319682"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47963_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01646089"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01646089'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01646089'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01646089'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01646089'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01646089 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N190b8c9575e14d38a4722c6351818ec9
    4 schema:citation sg:pub.10.1007/bf01645427
    5 sg:pub.10.1007/bf01646020
    6 https://doi.org/10.1063/1.1724319
    7 https://doi.org/10.1073/pnas.34.5.211
    8 https://doi.org/10.1103/physrev.139.b712
    9 schema:datePublished 1970-06
    10 schema:datePublishedReg 1970-06-01
    11 schema:description The equations of motion of a spin one particle as derived from Levy-Leblond's Galilean formulation of the Bargmann-Wigner equations are examined. Although such an approach is possible for the case of free particles, inconsistencies which closely parallel those encountered in the Bargmann-Wigner equations of special relaticity are shown to occur upon the introduction of minimal electromagnetic coupling. If, however, one considers the vector meson within the Lagrangian formalism of totally symmetric multispinors, it is found that the ten components which describe the vector meson in Minkowski space reduce to seven for the Galilean group and that in this formulation no difficulty occurs for minimal electromagnetic coupling. More generally it is demonstrated that one can replace Levy-Leblond's version of the Bargmann-Wigner equations by an alternative set which leads to the correct number of variables for the vector meson. A final extension consists in the proof that for all values of the spin the (Lagrangian) multispinor formalism implies the Bargmann-Wigner equations. Thus the problem of special relativity of seeking a Lagrangian formulation of the Bargmann-Wigner set is found to have only a somewhat trivial counterpart in the Galilean case.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N4354f50e533c4e5ea4b96093c9528e39
    16 N53ecfc6d5d9b4cef82503ea72de355e5
    17 sg:journal.1136216
    18 schema:name The Bargmann-Wigner method in Galilean relativity
    19 schema:pagination 97-108
    20 schema:productId N1ad6b7a86fc14a36a57d0acf48e0e37f
    21 N3f0153561a0f45bf9d3b839690060ff1
    22 Na5c18327f0c84595aca5415b038547b8
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025319682
    24 https://doi.org/10.1007/bf01646089
    25 schema:sdDatePublished 2019-04-11T09:09
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N4529493ad5d64f92a04e21ff11976a76
    28 schema:url http://link.springer.com/10.1007/BF01646089
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N190b8c9575e14d38a4722c6351818ec9 rdf:first sg:person.015442003621.64
    33 rdf:rest rdf:nil
    34 N1ad6b7a86fc14a36a57d0acf48e0e37f schema:name readcube_id
    35 schema:value 789f7ef181c8392bf3ddd891bc914b267b7de091c0c3a8fc1cd22e2dee46e1e9
    36 rdf:type schema:PropertyValue
    37 N3f0153561a0f45bf9d3b839690060ff1 schema:name doi
    38 schema:value 10.1007/bf01646089
    39 rdf:type schema:PropertyValue
    40 N4354f50e533c4e5ea4b96093c9528e39 schema:volumeNumber 18
    41 rdf:type schema:PublicationVolume
    42 N4529493ad5d64f92a04e21ff11976a76 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N53ecfc6d5d9b4cef82503ea72de355e5 schema:issueNumber 2
    45 rdf:type schema:PublicationIssue
    46 Na5c18327f0c84595aca5415b038547b8 schema:name dimensions_id
    47 schema:value pub.1025319682
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Medical and Health Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Clinical Sciences
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136216 schema:issn 0010-3616
    56 1432-0916
    57 schema:name Communications in Mathematical Physics
    58 rdf:type schema:Periodical
    59 sg:person.015442003621.64 schema:affiliation https://www.grid.ac/institutes/grid.16416.34
    60 schema:familyName Hagen
    61 schema:givenName C. R.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442003621.64
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf01645427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586302
    65 https://doi.org/10.1007/bf01645427
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bf01646020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006856625
    68 https://doi.org/10.1007/bf01646020
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1063/1.1724319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791193
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1073/pnas.34.5.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506808
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1103/physrev.139.b712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431306
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
    77 schema:name Department of Physics and Astronomy, University of Rochester, Rochester, New York
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...