Nonrelativistic particles and wave equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1967-12

AUTHORS

Jean-Marc Lévy-Leblond

ABSTRACT

This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Landé factorg=2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying “galilean electromagnetism” (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a “nonrelativistic electromagnetism”. Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations. More... »

PAGES

286-311

References to SciGraph publications

  • 1952-08. Representations of the Galilei group in IL NUOVO CIMENTO (1943-1954)
  • 1967-06. Galilean quantum field theories and a ghostless Lee model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1927-09. Zur Quantenmechanik des magnetischen Elektrons in ZEITSCHRIFT FÜR PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01646020

    DOI

    http://dx.doi.org/10.1007/bf01646020

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006856625


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Physique Th\u00e9orique", 
              "id": "https://www.grid.ac/institutes/grid.464174.4", 
              "name": [
                "Laboratoire de Physique Th\u00e9orique, Facult\u00e9 des Sciences, Pare Valrose, 06, Nice, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00e9vy-Leblond", 
            "givenName": "Jean-Marc", 
            "id": "sg:person.014406723706.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406723706.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0003-4916(65)90064-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008551796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.21.400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008789758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.21.400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008789758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01397326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008904362", 
              "https://doi.org/10.1007/bf01397326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02782239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009300447", 
              "https://doi.org/10.1007/bf02782239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02782239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009300447", 
              "https://doi.org/10.1007/bf02782239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.39.6.510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013327712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(60)90106-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014761879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.34.5.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031506808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047586302", 
              "https://doi.org/10.1007/bf01645427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047586302", 
              "https://doi.org/10.1007/bf01645427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1928.0023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050710636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1705013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057774680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1724208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057791082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1724319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057791193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.102.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060417502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.102.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060417502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.150.1060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.150.1060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.34.845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.34.845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.36.938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.36.938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1937856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062241846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1968551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069673975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00029890.1962.11989933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101514982"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1967-12", 
        "datePublishedReg": "1967-12-01", 
        "description": "This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Land\u00e9 factorg=2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying \u201cgalilean electromagnetism\u201d (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a \u201cnonrelativistic electromagnetism\u201d. Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01646020", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Nonrelativistic particles and wave equations", 
        "pagination": "286-311", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "20a960db831477b941a8b7d568fbabb0aafab4b376dfce8b0f3f25c0ca9098b5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01646020"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006856625"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01646020", 
          "https://app.dimensions.ai/details/publication/pub.1006856625"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01646020"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01646020 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne2ec5f65e8f3428e85760576dfa8b7e0
    4 schema:citation sg:pub.10.1007/bf01397326
    5 sg:pub.10.1007/bf01645427
    6 sg:pub.10.1007/bf02782239
    7 https://doi.org/10.1016/0003-4916(60)90106-8
    8 https://doi.org/10.1016/0003-4916(65)90064-3
    9 https://doi.org/10.1063/1.1705013
    10 https://doi.org/10.1063/1.1724208
    11 https://doi.org/10.1063/1.1724319
    12 https://doi.org/10.1073/pnas.34.5.211
    13 https://doi.org/10.1073/pnas.39.6.510
    14 https://doi.org/10.1080/00029890.1962.11989933
    15 https://doi.org/10.1098/rspa.1928.0023
    16 https://doi.org/10.1103/physrev.102.279
    17 https://doi.org/10.1103/physrev.150.1060
    18 https://doi.org/10.1103/revmodphys.21.400
    19 https://doi.org/10.1103/revmodphys.34.845
    20 https://doi.org/10.1103/revmodphys.36.938
    21 https://doi.org/10.1119/1.1937856
    22 https://doi.org/10.2307/1968551
    23 https://doi.org/10.2307/1969831
    24 schema:datePublished 1967-12
    25 schema:datePublishedReg 1967-12-01
    26 schema:description This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Landé factorg=2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying “galilean electromagnetism” (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a “nonrelativistic electromagnetism”. Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N1a4171f3751546399328e148d0d83087
    31 N724ce8ada9fb47b88264b837a997fb6a
    32 sg:journal.1136216
    33 schema:name Nonrelativistic particles and wave equations
    34 schema:pagination 286-311
    35 schema:productId N5119c274d5284ce4ac0db03f224ed049
    36 N828562abbb984b2e92dacd6bc8c8f337
    37 Ndf659e3213e04c2bbb1216ad16ff002b
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006856625
    39 https://doi.org/10.1007/bf01646020
    40 schema:sdDatePublished 2019-04-11T09:13
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N2e2fc773ec084915aada6d04042e3864
    43 schema:url http://link.springer.com/10.1007/BF01646020
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N1a4171f3751546399328e148d0d83087 schema:volumeNumber 6
    48 rdf:type schema:PublicationVolume
    49 N2e2fc773ec084915aada6d04042e3864 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N5119c274d5284ce4ac0db03f224ed049 schema:name doi
    52 schema:value 10.1007/bf01646020
    53 rdf:type schema:PropertyValue
    54 N724ce8ada9fb47b88264b837a997fb6a schema:issueNumber 4
    55 rdf:type schema:PublicationIssue
    56 N828562abbb984b2e92dacd6bc8c8f337 schema:name dimensions_id
    57 schema:value pub.1006856625
    58 rdf:type schema:PropertyValue
    59 Ndf659e3213e04c2bbb1216ad16ff002b schema:name readcube_id
    60 schema:value 20a960db831477b941a8b7d568fbabb0aafab4b376dfce8b0f3f25c0ca9098b5
    61 rdf:type schema:PropertyValue
    62 Ne2ec5f65e8f3428e85760576dfa8b7e0 rdf:first sg:person.014406723706.77
    63 rdf:rest rdf:nil
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136216 schema:issn 0010-3616
    71 1432-0916
    72 schema:name Communications in Mathematical Physics
    73 rdf:type schema:Periodical
    74 sg:person.014406723706.77 schema:affiliation https://www.grid.ac/institutes/grid.464174.4
    75 schema:familyName Lévy-Leblond
    76 schema:givenName Jean-Marc
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406723706.77
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf01397326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008904362
    80 https://doi.org/10.1007/bf01397326
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01645427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586302
    83 https://doi.org/10.1007/bf01645427
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02782239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009300447
    86 https://doi.org/10.1007/bf02782239
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/0003-4916(60)90106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014761879
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/0003-4916(65)90064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008551796
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1063/1.1705013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774680
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1063/1.1724208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791082
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1063/1.1724319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791193
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1073/pnas.34.5.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506808
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1073/pnas.39.6.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327712
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1080/00029890.1962.11989933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101514982
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1098/rspa.1928.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710636
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrev.102.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417502
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrev.150.1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433706
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/revmodphys.21.400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008789758
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/revmodphys.34.845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838120
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/revmodphys.36.938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838387
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1119/1.1937856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062241846
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.2307/1969831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675190
    121 rdf:type schema:CreativeWork
    122 https://www.grid.ac/institutes/grid.464174.4 schema:alternateName Laboratoire de Physique Théorique
    123 schema:name Laboratoire de Physique Théorique, Faculté des Sciences, Pare Valrose, 06, Nice, France
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...