Nonrelativistic particles and wave equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1967-12

AUTHORS

Jean-Marc Lévy-Leblond

ABSTRACT

This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Landé factorg=2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying “galilean electromagnetism” (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a “nonrelativistic electromagnetism”. Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations. More... »

PAGES

286-311

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01646020

DOI

http://dx.doi.org/10.1007/bf01646020

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006856625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique Th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.464174.4", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique, Facult\u00e9 des Sciences, Pare Valrose, 06, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00e9vy-Leblond", 
        "givenName": "Jean-Marc", 
        "id": "sg:person.014406723706.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406723706.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0003-4916(65)90064-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008551796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.21.400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008789758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.21.400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008789758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01397326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008904362", 
          "https://doi.org/10.1007/bf01397326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02782239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009300447", 
          "https://doi.org/10.1007/bf02782239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02782239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009300447", 
          "https://doi.org/10.1007/bf02782239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.39.6.510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013327712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(60)90106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014761879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.34.5.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031506808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047586302", 
          "https://doi.org/10.1007/bf01645427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047586302", 
          "https://doi.org/10.1007/bf01645427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1928.0023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050710636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1705013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.102.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.102.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.150.1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.150.1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1937856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062241846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1962.11989933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101514982"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1967-12", 
    "datePublishedReg": "1967-12-01", 
    "description": "This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Land\u00e9 factorg=2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying \u201cgalilean electromagnetism\u201d (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a \u201cnonrelativistic electromagnetism\u201d. Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01646020", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Nonrelativistic particles and wave equations", 
    "pagination": "286-311", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "20a960db831477b941a8b7d568fbabb0aafab4b376dfce8b0f3f25c0ca9098b5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01646020"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006856625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01646020", 
      "https://app.dimensions.ai/details/publication/pub.1006856625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01646020"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01646020'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01646020 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf6940de8aba84656860b28a282d25de1
4 schema:citation sg:pub.10.1007/bf01397326
5 sg:pub.10.1007/bf01645427
6 sg:pub.10.1007/bf02782239
7 https://doi.org/10.1016/0003-4916(60)90106-8
8 https://doi.org/10.1016/0003-4916(65)90064-3
9 https://doi.org/10.1063/1.1705013
10 https://doi.org/10.1063/1.1724208
11 https://doi.org/10.1063/1.1724319
12 https://doi.org/10.1073/pnas.34.5.211
13 https://doi.org/10.1073/pnas.39.6.510
14 https://doi.org/10.1080/00029890.1962.11989933
15 https://doi.org/10.1098/rspa.1928.0023
16 https://doi.org/10.1103/physrev.102.279
17 https://doi.org/10.1103/physrev.150.1060
18 https://doi.org/10.1103/revmodphys.21.400
19 https://doi.org/10.1103/revmodphys.34.845
20 https://doi.org/10.1103/revmodphys.36.938
21 https://doi.org/10.1119/1.1937856
22 https://doi.org/10.2307/1968551
23 https://doi.org/10.2307/1969831
24 schema:datePublished 1967-12
25 schema:datePublishedReg 1967-12-01
26 schema:description This paper is devoted to a detailed study of nonrelativistic particles and their properties, as described by Galilei invariant wave equations, in order to obtain a precise distinction between the specifically relativistic properties of elementary quantum mechanical systems and those which are also shared by nonrelativistic systems. After having emphasized that spin, for instance, is not such a specifically relativistic effect, we construct wave equations for nonrelativistic particles with any spin. Our derivation is based upon the theory of representations of the Galilei group, which define nonrelativistic particles. We particularly study the spin 1/2 case where we introduce a four-component wave equation, the nonrelativistic analogue of the Dirac equation. It leads to the conclusion that the spin magnetic moment, with its Landé factorg=2, is not a relativistic property. More generally, nonrelativistic particles seem to possess intrinsic moments with the same values as their relativistic counterparts, but are found to possess no higher electromagnetic multipole moments. Studying “galilean electromagnetism” (i.e. the theory of spin 1 massless particles), we show that only the displacement current is responsible for the breakdown of galilean invariance in Maxwell equations, and we make some comments about such a “nonrelativistic electromagnetism”. Comparing the connection between wave equations and the invariance group in both the relativistic and the nonrelativistic case, we are finally led to some vexing questions about the very concept of wave equations.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N10c884e05578452ca2309c0d4cf05b53
31 N841fae632a97431fbeba9b49402ac622
32 sg:journal.1136216
33 schema:name Nonrelativistic particles and wave equations
34 schema:pagination 286-311
35 schema:productId N74f10fe70c87453e897819867015b920
36 Nafb80e4339eb42a4adb8037306b64c4c
37 Nf8e673e9508e49baa11f2f7ae4ab93b8
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006856625
39 https://doi.org/10.1007/bf01646020
40 schema:sdDatePublished 2019-04-11T09:13
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N4d04c978f5324cd6ab7ec5366e628b17
43 schema:url http://link.springer.com/10.1007/BF01646020
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N10c884e05578452ca2309c0d4cf05b53 schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 N4d04c978f5324cd6ab7ec5366e628b17 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N74f10fe70c87453e897819867015b920 schema:name doi
52 schema:value 10.1007/bf01646020
53 rdf:type schema:PropertyValue
54 N841fae632a97431fbeba9b49402ac622 schema:volumeNumber 6
55 rdf:type schema:PublicationVolume
56 Nafb80e4339eb42a4adb8037306b64c4c schema:name dimensions_id
57 schema:value pub.1006856625
58 rdf:type schema:PropertyValue
59 Nf6940de8aba84656860b28a282d25de1 rdf:first sg:person.014406723706.77
60 rdf:rest rdf:nil
61 Nf8e673e9508e49baa11f2f7ae4ab93b8 schema:name readcube_id
62 schema:value 20a960db831477b941a8b7d568fbabb0aafab4b376dfce8b0f3f25c0ca9098b5
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1136216 schema:issn 0010-3616
71 1432-0916
72 schema:name Communications in Mathematical Physics
73 rdf:type schema:Periodical
74 sg:person.014406723706.77 schema:affiliation https://www.grid.ac/institutes/grid.464174.4
75 schema:familyName Lévy-Leblond
76 schema:givenName Jean-Marc
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406723706.77
78 rdf:type schema:Person
79 sg:pub.10.1007/bf01397326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008904362
80 https://doi.org/10.1007/bf01397326
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01645427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586302
83 https://doi.org/10.1007/bf01645427
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02782239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009300447
86 https://doi.org/10.1007/bf02782239
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0003-4916(60)90106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014761879
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0003-4916(65)90064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008551796
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1063/1.1705013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774680
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1063/1.1724208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791082
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.1724319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791193
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1073/pnas.34.5.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506808
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1073/pnas.39.6.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013327712
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/00029890.1962.11989933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101514982
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1098/rspa.1928.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710636
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrev.102.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417502
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrev.150.1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433706
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/revmodphys.21.400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008789758
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/revmodphys.34.845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838120
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/revmodphys.36.938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838387
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1119/1.1937856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062241846
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2307/1969831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675190
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.464174.4 schema:alternateName Laboratoire de Physique Théorique
123 schema:name Laboratoire de Physique Théorique, Faculté des Sciences, Pare Valrose, 06, Nice, France
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...