Baser*-semigroups and the logic of quantum mechanics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1968-06

AUTHORS

James C. T. Pool

ABSTRACT

The theory of orthomodular ortholattices provides mathematical constructs utilized in the quantum logic approach to the mathematical foundations of quantum physics. There exists a remarkable connection between the mathematical theories of orthomodular ortholattices and Baer*-semigroups; therefore, the question arises whether there exists a phenomenologically interpretable role for Baer *-semigroups in the context of the quantum logic approach. Arguments, involving the quantum theory of measurements, yield the result that the theory of Baer *-semigroups provides the mathematical constructs for the discussion of “operations” and conditional probabilities. More... »

PAGES

118-141

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01645838

DOI

http://dx.doi.org/10.1007/bf01645838

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012510980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "II. Institut f\u00fcr Theoretische Physik, Universit\u00e4t Hamburg, Germany", 
            "Applied Mathematics Division, Argonne National Laboratory, 60439, Argonne, Ill."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pool", 
        "givenName": "James C. T.", 
        "id": "sg:person.011513045417.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513045417.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1965-0183657-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003597010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19504430510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019254742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01418533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022411085", 
          "https://doi.org/10.1007/bf01418533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160150207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023322853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160150207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023322853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027252280", 
          "https://doi.org/10.1007/bf01646019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027252280", 
          "https://doi.org/10.1007/bf01646019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-52619-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033263997", 
          "https://doi.org/10.1007/978-3-642-52619-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1960-0125808-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049087402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/287574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058597617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.1397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.153.1397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-65-03224-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064417818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1961.11.1151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069062942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1966.19.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069063782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1968-06", 
    "datePublishedReg": "1968-06-01", 
    "description": "The theory of orthomodular ortholattices provides mathematical constructs utilized in the quantum logic approach to the mathematical foundations of quantum physics. There exists a remarkable connection between the mathematical theories of orthomodular ortholattices and Baer*-semigroups; therefore, the question arises whether there exists a phenomenologically interpretable role for Baer *-semigroups in the context of the quantum logic approach. Arguments, involving the quantum theory of measurements, yield the result that the theory of Baer *-semigroups provides the mathematical constructs for the discussion of \u201coperations\u201d and conditional probabilities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01645838", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Baser*-semigroups and the logic of quantum mechanics", 
    "pagination": "118-141", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3b9ad7e98fea5164f12155cf22e59b27420a747fc0607b3a98e5395dacd43196"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01645838"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012510980"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01645838", 
      "https://app.dimensions.ai/details/publication/pub.1012510980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47968_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01645838"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01645838'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01645838'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01645838'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01645838'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01645838 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N27aff0530e7b4ee98aced7e1ef63fc16
4 schema:citation sg:pub.10.1007/978-3-642-52619-0_2
5 sg:pub.10.1007/bf01418533
6 sg:pub.10.1007/bf01646019
7 https://doi.org/10.1002/andp.19504430510
8 https://doi.org/10.1002/cpa.3160150207
9 https://doi.org/10.1063/1.1704187
10 https://doi.org/10.1086/287574
11 https://doi.org/10.1090/s0002-9939-1960-0125808-6
12 https://doi.org/10.1090/s0002-9947-1965-0183657-6
13 https://doi.org/10.1103/physrev.153.1397
14 https://doi.org/10.1215/s0012-7094-65-03224-2
15 https://doi.org/10.2140/pjm.1961.11.1151
16 https://doi.org/10.2140/pjm.1966.19.81
17 https://doi.org/10.2307/1968621
18 schema:datePublished 1968-06
19 schema:datePublishedReg 1968-06-01
20 schema:description The theory of orthomodular ortholattices provides mathematical constructs utilized in the quantum logic approach to the mathematical foundations of quantum physics. There exists a remarkable connection between the mathematical theories of orthomodular ortholattices and Baer*-semigroups; therefore, the question arises whether there exists a phenomenologically interpretable role for Baer *-semigroups in the context of the quantum logic approach. Arguments, involving the quantum theory of measurements, yield the result that the theory of Baer *-semigroups provides the mathematical constructs for the discussion of “operations” and conditional probabilities.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N57c71295e9ca4ddfa6ba5046226703f9
25 Nacf338911271436b80b965d91de34091
26 sg:journal.1136216
27 schema:name Baser*-semigroups and the logic of quantum mechanics
28 schema:pagination 118-141
29 schema:productId N582bf96a25b64b5a9aefd42586a30839
30 N9c1c9a37f3da4366aaa2e5ed990e7d86
31 Na393c6eff4164ee7af1bd60ddb30364d
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012510980
33 https://doi.org/10.1007/bf01645838
34 schema:sdDatePublished 2019-04-11T09:10
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N5917ce46f949492db7ea04281f4356b3
37 schema:url http://link.springer.com/10.1007/BF01645838
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N27aff0530e7b4ee98aced7e1ef63fc16 rdf:first sg:person.011513045417.54
42 rdf:rest rdf:nil
43 N57c71295e9ca4ddfa6ba5046226703f9 schema:volumeNumber 9
44 rdf:type schema:PublicationVolume
45 N582bf96a25b64b5a9aefd42586a30839 schema:name dimensions_id
46 schema:value pub.1012510980
47 rdf:type schema:PropertyValue
48 N5917ce46f949492db7ea04281f4356b3 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N9c1c9a37f3da4366aaa2e5ed990e7d86 schema:name doi
51 schema:value 10.1007/bf01645838
52 rdf:type schema:PropertyValue
53 Na393c6eff4164ee7af1bd60ddb30364d schema:name readcube_id
54 schema:value 3b9ad7e98fea5164f12155cf22e59b27420a747fc0607b3a98e5395dacd43196
55 rdf:type schema:PropertyValue
56 Nacf338911271436b80b965d91de34091 schema:issueNumber 2
57 rdf:type schema:PublicationIssue
58 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
62 schema:name Quantum Physics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136216 schema:issn 0010-3616
65 1432-0916
66 schema:name Communications in Mathematical Physics
67 rdf:type schema:Periodical
68 sg:person.011513045417.54 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
69 schema:familyName Pool
70 schema:givenName James C. T.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011513045417.54
72 rdf:type schema:Person
73 sg:pub.10.1007/978-3-642-52619-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033263997
74 https://doi.org/10.1007/978-3-642-52619-0_2
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01418533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022411085
77 https://doi.org/10.1007/bf01418533
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01646019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027252280
80 https://doi.org/10.1007/bf01646019
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/andp.19504430510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019254742
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/cpa.3160150207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023322853
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.1704187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774129
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1086/287574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058597617
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s0002-9939-1960-0125808-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049087402
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1090/s0002-9947-1965-0183657-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003597010
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrev.153.1397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434367
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1215/s0012-7094-65-03224-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064417818
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2140/pjm.1961.11.1151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062942
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2140/pjm.1966.19.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063782
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1968621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674038
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.9026.d schema:alternateName University of Hamburg
105 schema:name Applied Mathematics Division, Argonne National Laboratory, 60439, Argonne, Ill.
106 II. Institut für Theoretische Physik, Universität Hamburg, Germany
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...