Solutions of the Einstein-Maxwell equations with many black holes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1972-06

AUTHORS

J. B. Hartle, S. W. Hawking

ABSTRACT

In Newtonian gravitational theory a system of point charged particles can be arranged in static equilibrium under their mutual gravitational and electrostatic forces provided that for each particle the charge,e, is related to the mass,m, bye=G1/2m. Corresponding static solutions of the coupled source free Einstein-Maxwell equations have been given by Majumdar and Papapetrou. We show that these solutions can be analytically extended and interpreted as a system of charged black holes in equilibrium under their gravitational and electrical forces. We also analyse some of stationary solutions of the Einstein-Maxwell equations discovered by Israel and Wilson. If space is asymptotically Euclidean we find that all of these solutions have naked singularities. More... »

PAGES

87-101

References to SciGraph publications

  • 1968-09. Event horizons in static electrovac space-times in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01645696

    DOI

    http://dx.doi.org/10.1007/bf01645696

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008995013


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "Institute of Theoretical Astronomy, Cambridge, England", 
                "Department of Physics, University of California, 93 106, Santa Barbara, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hartle", 
            "givenName": "J. B.", 
            "id": "sg:person.0667456010.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667456010.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Theoretical Astronomy, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rspa.1962.0079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022524675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(66)90515-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030981285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(66)90515-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030981285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040532386", 
              "https://doi.org/10.1007/bf01645859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040532386", 
              "https://doi.org/10.1007/bf01645859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1704018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057773960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1704019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057773961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1704351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057774292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1705193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057774859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.119.1743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060423002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.119.1743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060423002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.120.1507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060423322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.120.1507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060423322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.133.b845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.133.b845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.174.1559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060439466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.174.1559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060439466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.72.390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.72.390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.26.331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060774546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.26.331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060774546"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1972-06", 
        "datePublishedReg": "1972-06-01", 
        "description": "In Newtonian gravitational theory a system of point charged particles can be arranged in static equilibrium under their mutual gravitational and electrostatic forces provided that for each particle the charge,e, is related to the mass,m, bye=G1/2m. Corresponding static solutions of the coupled source free Einstein-Maxwell equations have been given by Majumdar and Papapetrou. We show that these solutions can be analytically extended and interpreted as a system of charged black holes in equilibrium under their gravitational and electrical forces. We also analyse some of stationary solutions of the Einstein-Maxwell equations discovered by Israel and Wilson. If space is asymptotically Euclidean we find that all of these solutions have naked singularities.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01645696", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Solutions of the Einstein-Maxwell equations with many black holes", 
        "pagination": "87-101", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2ada3f2db26070f982fccc80375395491786752c4ef5945d6e060f598f4f9849"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01645696"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008995013"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01645696", 
          "https://app.dimensions.ai/details/publication/pub.1008995013"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47975_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01645696"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01645696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01645696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01645696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01645696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01645696 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Ndd73942cb4e74ac5ab56e198dcfbd232
    4 schema:citation sg:pub.10.1007/bf01645859
    5 https://doi.org/10.1016/0031-9163(66)90515-4
    6 https://doi.org/10.1063/1.1704018
    7 https://doi.org/10.1063/1.1704019
    8 https://doi.org/10.1063/1.1704351
    9 https://doi.org/10.1063/1.1705193
    10 https://doi.org/10.1098/rspa.1962.0079
    11 https://doi.org/10.1103/physrev.119.1743
    12 https://doi.org/10.1103/physrev.120.1507
    13 https://doi.org/10.1103/physrev.133.b845
    14 https://doi.org/10.1103/physrev.174.1559
    15 https://doi.org/10.1103/physrev.72.390
    16 https://doi.org/10.1103/physrevlett.26.331
    17 schema:datePublished 1972-06
    18 schema:datePublishedReg 1972-06-01
    19 schema:description In Newtonian gravitational theory a system of point charged particles can be arranged in static equilibrium under their mutual gravitational and electrostatic forces provided that for each particle the charge,e, is related to the mass,m, bye=G1/2m. Corresponding static solutions of the coupled source free Einstein-Maxwell equations have been given by Majumdar and Papapetrou. We show that these solutions can be analytically extended and interpreted as a system of charged black holes in equilibrium under their gravitational and electrical forces. We also analyse some of stationary solutions of the Einstein-Maxwell equations discovered by Israel and Wilson. If space is asymptotically Euclidean we find that all of these solutions have naked singularities.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Nc7addfa2ebf24c588dfa1df9ef0d8ea6
    24 Nf32f3995a5d145f0be1c9ec560705b89
    25 sg:journal.1136216
    26 schema:name Solutions of the Einstein-Maxwell equations with many black holes
    27 schema:pagination 87-101
    28 schema:productId N4c0c195706bb44f2b456e6992dc9a1d3
    29 N6b1d9bae070e49a6a6e0a3ea5b6f6bd8
    30 Nf09ef2d2264d42eab1e5be5d70ed455a
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008995013
    32 https://doi.org/10.1007/bf01645696
    33 schema:sdDatePublished 2019-04-11T09:10
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N2c7d19a45b7444d48a25ed04e0da9ca0
    36 schema:url http://link.springer.com/10.1007/BF01645696
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N2c7d19a45b7444d48a25ed04e0da9ca0 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N4c0c195706bb44f2b456e6992dc9a1d3 schema:name readcube_id
    43 schema:value 2ada3f2db26070f982fccc80375395491786752c4ef5945d6e060f598f4f9849
    44 rdf:type schema:PropertyValue
    45 N6b1d9bae070e49a6a6e0a3ea5b6f6bd8 schema:name doi
    46 schema:value 10.1007/bf01645696
    47 rdf:type schema:PropertyValue
    48 N9c15a6e3982a4a7c80e0da46dbc97ae8 rdf:first sg:person.012212614165.22
    49 rdf:rest rdf:nil
    50 Nb0dbd9baceab4dcbb153df299c9517ed schema:name Institute of Theoretical Astronomy, Cambridge, England
    51 rdf:type schema:Organization
    52 Nc7addfa2ebf24c588dfa1df9ef0d8ea6 schema:issueNumber 2
    53 rdf:type schema:PublicationIssue
    54 Ndd73942cb4e74ac5ab56e198dcfbd232 rdf:first sg:person.0667456010.78
    55 rdf:rest N9c15a6e3982a4a7c80e0da46dbc97ae8
    56 Nf09ef2d2264d42eab1e5be5d70ed455a schema:name dimensions_id
    57 schema:value pub.1008995013
    58 rdf:type schema:PropertyValue
    59 Nf32f3995a5d145f0be1c9ec560705b89 schema:volumeNumber 26
    60 rdf:type schema:PublicationVolume
    61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Chemical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Physical Chemistry (incl. Structural)
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136216 schema:issn 0010-3616
    68 1432-0916
    69 schema:name Communications in Mathematical Physics
    70 rdf:type schema:Periodical
    71 sg:person.012212614165.22 schema:affiliation Nb0dbd9baceab4dcbb153df299c9517ed
    72 schema:familyName Hawking
    73 schema:givenName S. W.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    75 rdf:type schema:Person
    76 sg:person.0667456010.78 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    77 schema:familyName Hartle
    78 schema:givenName J. B.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667456010.78
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf01645859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040532386
    82 https://doi.org/10.1007/bf01645859
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0031-9163(66)90515-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030981285
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1063/1.1704018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773960
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1063/1.1704019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773961
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1063/1.1704351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774292
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1063/1.1705193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774859
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1098/rspa.1962.0079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022524675
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physrev.119.1743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423002
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1103/physrev.120.1507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423322
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrev.133.b845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428390
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrev.174.1559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060439466
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrev.72.390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453528
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevlett.26.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774546
    107 rdf:type schema:CreativeWork
    108 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
    109 schema:name Department of Physics, University of California, 93 106, Santa Barbara, California, USA
    110 Institute of Theoretical Astronomy, Cambridge, England
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...