Quantum stochastic processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-12

AUTHORS

E. B. Davies

ABSTRACT

In order to describe rigorously certain measurement procedures, where observations of the arrival of quanta at a counter are made throughout an interval of time, it is necessary to introduce the concept of a quantum stochastic process. While fully quantum mechanical in nature, these have a great deal of similarity with classical stochastic processes and can be characterized by and constructed from their infinitesimal generators. The infinitestimal generators are naturally obtained from certain “fields” which we prove must be of the boson or fermion type. More... »

PAGES

277-304

References to SciGraph publications

  • 1958-12. Unitary representations of group extensions. I in ACTA MATHEMATICA
  • 1950. Measure Theory in NONE
  • 1970-09. An operational approach to quantum probability in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1963-12. Positive linear maps of operator algebras in ACTA MATHEMATICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01645529

    DOI

    http://dx.doi.org/10.1007/bf01645529

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009885806


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Mathematics, Institute for Advanced Study, Princeton"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davies", 
            "givenName": "E. B.", 
            "id": "sg:person.015053300037.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053300037.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1090/s0002-9947-1956-0076317-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003917452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02391860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005811532", 
              "https://doi.org/10.1007/bf02391860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1962-0139960-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023584655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.130.2529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024216314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.130.2529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024216314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1957-0089999-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027611047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01647093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028962589", 
              "https://doi.org/10.1007/bf01647093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01647093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028962589", 
              "https://doi.org/10.1007/bf01647093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029010932", 
              "https://doi.org/10.1007/bf02392428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9440-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029413732", 
              "https://doi.org/10.1007/978-1-4684-9440-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9440-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029413732", 
              "https://doi.org/10.1007/978-1-4684-9440-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1236(70)90064-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030757897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/memo/0024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059343073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1961.11.679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069063025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675342"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1969-12", 
        "datePublishedReg": "1969-12-01", 
        "description": "In order to describe rigorously certain measurement procedures, where observations of the arrival of quanta at a counter are made throughout an interval of time, it is necessary to introduce the concept of a quantum stochastic process. While fully quantum mechanical in nature, these have a great deal of similarity with classical stochastic processes and can be characterized by and constructed from their infinitesimal generators. The infinitestimal generators are naturally obtained from certain \u201cfields\u201d which we prove must be of the boson or fermion type.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01645529", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Quantum stochastic processes", 
        "pagination": "277-304", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2f1845e091bcbe0f4b83731d6ec14362d1dfe400552b25556496aac025919ced"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01645529"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009885806"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01645529", 
          "https://app.dimensions.ai/details/publication/pub.1009885806"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47968_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01645529"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01645529'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01645529'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01645529'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01645529'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01645529 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N4cf43fe6350c49f4baca4e81faa82dc3
    4 schema:citation sg:pub.10.1007/978-1-4684-9440-2
    5 sg:pub.10.1007/bf01647093
    6 sg:pub.10.1007/bf02391860
    7 sg:pub.10.1007/bf02392428
    8 https://doi.org/10.1016/0022-1236(70)90064-9
    9 https://doi.org/10.1090/memo/0024
    10 https://doi.org/10.1090/s0002-9947-1956-0076317-8
    11 https://doi.org/10.1090/s0002-9947-1957-0089999-2
    12 https://doi.org/10.1090/s0002-9947-1962-0139960-6
    13 https://doi.org/10.1103/physrev.130.2529
    14 https://doi.org/10.2140/pjm.1961.11.679
    15 https://doi.org/10.2307/1969548
    16 https://doi.org/10.2307/1969831
    17 https://doi.org/10.2307/1969994
    18 schema:datePublished 1969-12
    19 schema:datePublishedReg 1969-12-01
    20 schema:description In order to describe rigorously certain measurement procedures, where observations of the arrival of quanta at a counter are made throughout an interval of time, it is necessary to introduce the concept of a quantum stochastic process. While fully quantum mechanical in nature, these have a great deal of similarity with classical stochastic processes and can be characterized by and constructed from their infinitesimal generators. The infinitestimal generators are naturally obtained from certain “fields” which we prove must be of the boson or fermion type.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N1900e4d017044b9983f7a8cfdc6834bd
    25 N9f6c21079af34b809779a71988b4f853
    26 sg:journal.1136216
    27 schema:name Quantum stochastic processes
    28 schema:pagination 277-304
    29 schema:productId N3aa4ed2caf6445b9b4112a93a35e69f1
    30 Nba04632433c04b8f8ac1ce5f4027fc63
    31 Nef558ae072c047e5b402953b73bd339c
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009885806
    33 https://doi.org/10.1007/bf01645529
    34 schema:sdDatePublished 2019-04-11T09:10
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N33b3cd79e8f1439e91cc94e54c76140f
    37 schema:url http://link.springer.com/10.1007/BF01645529
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N1900e4d017044b9983f7a8cfdc6834bd schema:volumeNumber 15
    42 rdf:type schema:PublicationVolume
    43 N33b3cd79e8f1439e91cc94e54c76140f schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N3aa4ed2caf6445b9b4112a93a35e69f1 schema:name doi
    46 schema:value 10.1007/bf01645529
    47 rdf:type schema:PropertyValue
    48 N4cf43fe6350c49f4baca4e81faa82dc3 rdf:first sg:person.015053300037.08
    49 rdf:rest rdf:nil
    50 N9f6c21079af34b809779a71988b4f853 schema:issueNumber 4
    51 rdf:type schema:PublicationIssue
    52 Nba04632433c04b8f8ac1ce5f4027fc63 schema:name readcube_id
    53 schema:value 2f1845e091bcbe0f4b83731d6ec14362d1dfe400552b25556496aac025919ced
    54 rdf:type schema:PropertyValue
    55 Nef558ae072c047e5b402953b73bd339c schema:name dimensions_id
    56 schema:value pub.1009885806
    57 rdf:type schema:PropertyValue
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Statistics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1136216 schema:issn 0010-3616
    65 1432-0916
    66 schema:name Communications in Mathematical Physics
    67 rdf:type schema:Periodical
    68 sg:person.015053300037.08 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    69 schema:familyName Davies
    70 schema:givenName E. B.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053300037.08
    72 rdf:type schema:Person
    73 sg:pub.10.1007/978-1-4684-9440-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029413732
    74 https://doi.org/10.1007/978-1-4684-9440-2
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf01647093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028962589
    77 https://doi.org/10.1007/bf01647093
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02391860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005811532
    80 https://doi.org/10.1007/bf02391860
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02392428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029010932
    83 https://doi.org/10.1007/bf02392428
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0022-1236(70)90064-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030757897
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1090/memo/0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343073
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1090/s0002-9947-1956-0076317-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003917452
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1090/s0002-9947-1957-0089999-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027611047
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1090/s0002-9947-1962-0139960-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023584655
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrev.130.2529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024216314
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.2140/pjm.1961.11.679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063025
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.2307/1969548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674923
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.2307/1969831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675190
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.2307/1969994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675342
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    106 schema:name School of Mathematics, Institute for Advanced Study, Princeton
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...