Galilean quantum field theories and a ghostless Lee model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1967-06

AUTHORS

Jean-Marc Lévy-Leblond

ABSTRACT

Galilean quantum field theories, i.e. kinematically consistent non-relativistic quantum theories with an infinite number of degrees of freedom, are considered. These theories transcend the frame of ordinary quantum mechanics by allowing genuine particle production processes to be described. The general structure of such theories is discussed and contrasted with the typical structure of relativistic quantum field theories which they may serve to illustrate a contrario. Despite the mass superselection rule, and due to the weakening of local commutativity conditions, galilean quantum field theories are much less constrained than relativistic ones. The CPT and spin-and-statistics theorems do not hold here, neither does Haag's theorem. Second-quantized quantum mechanics, some many-body theories (such as the polaron model) and static models are briefly examined, giving simple examples and counterexamples of the general properties asserted. A Lee model with complete nonrelativistic kinematics is studied and shown to give a consistent non-trivial example of a galilean quantum field theory. In this “GaliLee” model, while all the desirable features of the usual Lee model remain, the ghost problem disappears and the local coupling limit gives meaningful expressions for the physical quantities. The (V ↔ N ϑ) sector is solved for the physical V-particle whose renormalization constant is finite for local coupling, and for the N-ϑ scattering amplitude, which obeys an exact effective range formula in the same local limit. The elementarity of the V-particle is discussed in relation with theZ=0 rule and Levinson's theorem which is found wanting. The case of an unstable V-particle is also considered, and leads, for local coupling, to an exact Breit-Wigner formula for the N-ϑ scattering cross-section. More... »

PAGES

157-176

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01645427

DOI

http://dx.doi.org/10.1007/bf01645427

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047586302


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Physique Th\u00e9orique, Facult\u00e9 des Sciences, 06-Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00e9vy-Leblond", 
        "givenName": "Jean-Marc", 
        "id": "sg:person.014406723706.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406723706.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0003-4916(62)90116-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000459927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02732720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002474278", 
          "https://doi.org/10.1007/bf02732720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02732720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002474278", 
          "https://doi.org/10.1007/bf02732720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(60)90064-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007780420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(56)90116-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008229477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(56)90116-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008229477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02782239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009300447", 
          "https://doi.org/10.1007/bf02782239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02782239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009300447", 
          "https://doi.org/10.1007/bf02782239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(60)90106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014761879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02727534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016602508", 
          "https://doi.org/10.1007/bf02727534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02727534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016602508", 
          "https://doi.org/10.1007/bf02727534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02826501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027594800", 
          "https://doi.org/10.1007/bf02826501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02826501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027594800", 
          "https://doi.org/10.1007/bf02826501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018735400101213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029570998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018735400101213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029570998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01649587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036371163", 
          "https://doi.org/10.1007/bf01649587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01649587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036371163", 
          "https://doi.org/10.1007/bf01649587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02733759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036880873", 
          "https://doi.org/10.1007/bf02733759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02733759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036880873", 
          "https://doi.org/10.1007/bf02733759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037336061", 
          "https://doi.org/10.1007/bf01645460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037336061", 
          "https://doi.org/10.1007/bf01645460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02725105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049337028", 
          "https://doi.org/10.1007/bf02725105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02725105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049337028", 
          "https://doi.org/10.1007/bf02725105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1705004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.118.875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060422843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.118.875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060422843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.125.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.125.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.128.2879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.128.2879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.133.b1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.133.b1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060428247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.88.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.88.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.95.1329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.95.1329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.17.419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063130260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1967-06", 
    "datePublishedReg": "1967-06-01", 
    "description": "Galilean quantum field theories, i.e. kinematically consistent non-relativistic quantum theories with an infinite number of degrees of freedom, are considered. These theories transcend the frame of ordinary quantum mechanics by allowing genuine particle production processes to be described. The general structure of such theories is discussed and contrasted with the typical structure of relativistic quantum field theories which they may serve to illustrate a contrario. Despite the mass superselection rule, and due to the weakening of local commutativity conditions, galilean quantum field theories are much less constrained than relativistic ones. The CPT and spin-and-statistics theorems do not hold here, neither does Haag's theorem. Second-quantized quantum mechanics, some many-body theories (such as the polaron model) and static models are briefly examined, giving simple examples and counterexamples of the general properties asserted. A Lee model with complete nonrelativistic kinematics is studied and shown to give a consistent non-trivial example of a galilean quantum field theory. In this \u201cGaliLee\u201d model, while all the desirable features of the usual Lee model remain, the ghost problem disappears and the local coupling limit gives meaningful expressions for the physical quantities. The (V \u2194 N \u03d1) sector is solved for the physical V-particle whose renormalization constant is finite for local coupling, and for the N-\u03d1 scattering amplitude, which obeys an exact effective range formula in the same local limit. The elementarity of the V-particle is discussed in relation with theZ=0 rule and Levinson's theorem which is found wanting. The case of an unstable V-particle is also considered, and leads, for local coupling, to an exact Breit-Wigner formula for the N-\u03d1 scattering cross-section.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01645427", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Galilean quantum field theories and a ghostless Lee model", 
    "pagination": "157-176", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2b0268f8fac2b53b4bbac6dc8cc1355160a9b943d370ed1c7c3f3e3324349d9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01645427"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047586302"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01645427", 
      "https://app.dimensions.ai/details/publication/pub.1047586302"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47980_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01645427"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01645427'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01645427'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01645427'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01645427'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01645427 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N368f268632834219ac9afa810221d94a
4 schema:citation sg:pub.10.1007/bf01645460
5 sg:pub.10.1007/bf01649587
6 sg:pub.10.1007/bf02725105
7 sg:pub.10.1007/bf02727534
8 sg:pub.10.1007/bf02732720
9 sg:pub.10.1007/bf02733759
10 sg:pub.10.1007/bf02782239
11 sg:pub.10.1007/bf02826501
12 https://doi.org/10.1016/0003-4916(60)90064-6
13 https://doi.org/10.1016/0003-4916(60)90106-8
14 https://doi.org/10.1016/0003-4916(62)90116-1
15 https://doi.org/10.1016/0029-5582(56)90116-x
16 https://doi.org/10.1063/1.1705004
17 https://doi.org/10.1063/1.1724319
18 https://doi.org/10.1080/00018735400101213
19 https://doi.org/10.1103/physrev.118.875
20 https://doi.org/10.1103/physrev.125.1061
21 https://doi.org/10.1103/physrev.128.2879
22 https://doi.org/10.1103/physrev.133.b1318
23 https://doi.org/10.1103/physrev.88.101
24 https://doi.org/10.1103/physrev.95.1329
25 https://doi.org/10.1103/revmodphys.34.401
26 https://doi.org/10.1103/revmodphys.34.845
27 https://doi.org/10.1143/ptp.17.419
28 https://doi.org/10.2307/1968551
29 https://doi.org/10.2307/1969831
30 schema:datePublished 1967-06
31 schema:datePublishedReg 1967-06-01
32 schema:description Galilean quantum field theories, i.e. kinematically consistent non-relativistic quantum theories with an infinite number of degrees of freedom, are considered. These theories transcend the frame of ordinary quantum mechanics by allowing genuine particle production processes to be described. The general structure of such theories is discussed and contrasted with the typical structure of relativistic quantum field theories which they may serve to illustrate a contrario. Despite the mass superselection rule, and due to the weakening of local commutativity conditions, galilean quantum field theories are much less constrained than relativistic ones. The CPT and spin-and-statistics theorems do not hold here, neither does Haag's theorem. Second-quantized quantum mechanics, some many-body theories (such as the polaron model) and static models are briefly examined, giving simple examples and counterexamples of the general properties asserted. A Lee model with complete nonrelativistic kinematics is studied and shown to give a consistent non-trivial example of a galilean quantum field theory. In this “GaliLee” model, while all the desirable features of the usual Lee model remain, the ghost problem disappears and the local coupling limit gives meaningful expressions for the physical quantities. The (V ↔ N ϑ) sector is solved for the physical V-particle whose renormalization constant is finite for local coupling, and for the N-ϑ scattering amplitude, which obeys an exact effective range formula in the same local limit. The elementarity of the V-particle is discussed in relation with theZ=0 rule and Levinson's theorem which is found wanting. The case of an unstable V-particle is also considered, and leads, for local coupling, to an exact Breit-Wigner formula for the N-ϑ scattering cross-section.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N294839fc278d4f07a69d3dea5b6822a4
37 Ndd0cd712d6334309ad53de4cb625fb33
38 sg:journal.1136216
39 schema:name Galilean quantum field theories and a ghostless Lee model
40 schema:pagination 157-176
41 schema:productId N70eb1270f7d047cbad01a6f6d240789a
42 Nbea930b47c28444a8720d258a3eb1392
43 Ncb63268c57eb40c6a60bcf1f168bc533
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586302
45 https://doi.org/10.1007/bf01645427
46 schema:sdDatePublished 2019-04-11T09:11
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N2efef0676fad4b028748a57bf519ffb7
49 schema:url http://link.springer.com/10.1007/BF01645427
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N113e926a368f4b5c92a0b844d337d491 schema:name Physique Théorique, Faculté des Sciences, 06-Nice, France
54 rdf:type schema:Organization
55 N294839fc278d4f07a69d3dea5b6822a4 schema:volumeNumber 4
56 rdf:type schema:PublicationVolume
57 N2efef0676fad4b028748a57bf519ffb7 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N368f268632834219ac9afa810221d94a rdf:first sg:person.014406723706.77
60 rdf:rest rdf:nil
61 N70eb1270f7d047cbad01a6f6d240789a schema:name dimensions_id
62 schema:value pub.1047586302
63 rdf:type schema:PropertyValue
64 Nbea930b47c28444a8720d258a3eb1392 schema:name doi
65 schema:value 10.1007/bf01645427
66 rdf:type schema:PropertyValue
67 Ncb63268c57eb40c6a60bcf1f168bc533 schema:name readcube_id
68 schema:value e2b0268f8fac2b53b4bbac6dc8cc1355160a9b943d370ed1c7c3f3e3324349d9
69 rdf:type schema:PropertyValue
70 Ndd0cd712d6334309ad53de4cb625fb33 schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
76 schema:name Quantum Physics
77 rdf:type schema:DefinedTerm
78 sg:journal.1136216 schema:issn 0010-3616
79 1432-0916
80 schema:name Communications in Mathematical Physics
81 rdf:type schema:Periodical
82 sg:person.014406723706.77 schema:affiliation N113e926a368f4b5c92a0b844d337d491
83 schema:familyName Lévy-Leblond
84 schema:givenName Jean-Marc
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406723706.77
86 rdf:type schema:Person
87 sg:pub.10.1007/bf01645460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037336061
88 https://doi.org/10.1007/bf01645460
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01649587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036371163
91 https://doi.org/10.1007/bf01649587
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02725105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049337028
94 https://doi.org/10.1007/bf02725105
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02727534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016602508
97 https://doi.org/10.1007/bf02727534
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02732720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002474278
100 https://doi.org/10.1007/bf02732720
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02733759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036880873
103 https://doi.org/10.1007/bf02733759
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02782239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009300447
106 https://doi.org/10.1007/bf02782239
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02826501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027594800
109 https://doi.org/10.1007/bf02826501
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0003-4916(60)90064-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007780420
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0003-4916(60)90106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014761879
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0003-4916(62)90116-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000459927
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0029-5582(56)90116-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008229477
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.1705004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774671
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.1724319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791193
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/00018735400101213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029570998
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrev.118.875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060422843
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrev.125.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424854
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrev.128.2879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060426180
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrev.133.b1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428247
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrev.88.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459717
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrev.95.1329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462488
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/revmodphys.34.401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838085
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/revmodphys.34.845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838120
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1143/ptp.17.419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063130260
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/1969831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675190
146 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...