Existence of solitary waves in higher dimensions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-06

AUTHORS

Walter A. Strauss

ABSTRACT

The elliptic equation Δu=F(u) possesses non-trivial solutions inRn which are exponentially small at infinity, for a large class of functionsF. Each of them provides a solitary wave of the nonlinear Klein-Gordon equation.

PAGES

149-162

Journal

TITLE

Communications in Mathematical Physics

ISSUE

2

VOLUME

55

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01626517

DOI

http://dx.doi.org/10.1007/bf01626517

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020519501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brown University", 
          "id": "https://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Department of Mathematics, Brown University, 02912, Providence, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strauss", 
        "givenName": "Walter A.", 
        "id": "sg:person.0711741724.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711741724.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(72)90001-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007288608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009743749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009743749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605307708820042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030530316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-30.1.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041980151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmj-1973-3-2-161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064427470"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-06", 
    "datePublishedReg": "1977-06-01", 
    "description": "The elliptic equation \u0394u=F(u) possesses non-trivial solutions inRn which are exponentially small at infinity, for a large class of functionsF. Each of them provides a solitary wave of the nonlinear Klein-Gordon equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01626517", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Existence of solitary waves in higher dimensions", 
    "pagination": "149-162", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61c595add31bdc359d57d08e1fb3aa2ed83dd9934181728a08f5efa2fa89db65"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01626517"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020519501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01626517", 
      "https://app.dimensions.ai/details/publication/pub.1020519501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01626517"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01626517'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01626517'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01626517'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01626517'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01626517 schema:author Nc376e225bc1a441fa596643f1c3a8ee6
2 schema:citation https://doi.org/10.1002/cpa.3160120302
3 https://doi.org/10.1016/0022-1236(72)90001-8
4 https://doi.org/10.1063/1.1665265
5 https://doi.org/10.1080/03605307708820042
6 https://doi.org/10.1112/plms/s3-30.1.76
7 https://doi.org/10.1216/rmj-1973-3-2-161
8 schema:datePublished 1977-06
9 schema:datePublishedReg 1977-06-01
10 schema:description The elliptic equation Δu=F(u) possesses non-trivial solutions inRn which are exponentially small at infinity, for a large class of functionsF. Each of them provides a solitary wave of the nonlinear Klein-Gordon equation.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N3a9b369bc91d4e79975f6ed7fe7d450a
15 Na93de3c13dbe40308cd36dd66b61d96a
16 sg:journal.1136216
17 schema:name Existence of solitary waves in higher dimensions
18 schema:pagination 149-162
19 schema:productId N02a4b3aafa8844c993efb1d87b85bce4
20 N1b3848da7d544fa08383145b2b260fc6
21 Ncf6e408590a944569dfc4a329d186dfd
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020519501
23 https://doi.org/10.1007/bf01626517
24 schema:sdDatePublished 2019-04-10T18:17
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N1728490ad0e5465b85fa07810bc50674
27 schema:url http://link.springer.com/10.1007/BF01626517
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N02a4b3aafa8844c993efb1d87b85bce4 schema:name dimensions_id
32 schema:value pub.1020519501
33 rdf:type schema:PropertyValue
34 N1728490ad0e5465b85fa07810bc50674 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N1b3848da7d544fa08383145b2b260fc6 schema:name readcube_id
37 schema:value 61c595add31bdc359d57d08e1fb3aa2ed83dd9934181728a08f5efa2fa89db65
38 rdf:type schema:PropertyValue
39 N3a9b369bc91d4e79975f6ed7fe7d450a schema:volumeNumber 55
40 rdf:type schema:PublicationVolume
41 Na93de3c13dbe40308cd36dd66b61d96a schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 Nc376e225bc1a441fa596643f1c3a8ee6 rdf:first sg:person.0711741724.62
44 rdf:rest rdf:nil
45 Ncf6e408590a944569dfc4a329d186dfd schema:name doi
46 schema:value 10.1007/bf01626517
47 rdf:type schema:PropertyValue
48 sg:journal.1136216 schema:issn 0010-3616
49 1432-0916
50 schema:name Communications in Mathematical Physics
51 rdf:type schema:Periodical
52 sg:person.0711741724.62 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
53 schema:familyName Strauss
54 schema:givenName Walter A.
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711741724.62
56 rdf:type schema:Person
57 https://doi.org/10.1002/cpa.3160120302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009743749
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1016/0022-1236(72)90001-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007288608
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1063/1.1665265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743345
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1080/03605307708820042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030530316
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1112/plms/s3-30.1.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041980151
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1216/rmj-1973-3-2-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064427470
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.40263.33 schema:alternateName Brown University
70 schema:name Department of Mathematics, Brown University, 02912, Providence, Rhode Island, USA
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...