Zeta function regularization of path integrals in curved spacetime View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1977-06

AUTHORS

S. W. Hawking

ABSTRACT

This paper describes a technique for regularizing quadratic path integrals on a curved background spacetime. One forms a generalized zeta function from the eigenvalues of the differential operator that appears in the action integral. The zeta function is a meromorphic function and its gradient at the origin is defined to be the determinant of the operator. This technique agrees with dimensional regularization where one generalises ton dimensions by adding extra flat dimensions. The generalized zeta function can be expressed as a Mellin transform of the kernel of the heat equation which describes diffusion over the four dimensional spacetime manifold in a fith dimension of parameter time. Using the asymptotic expansion for the heat kernel, one can deduce the behaviour of the path integral under scale transformations of the background metric. This suggests that there may be a natural cut off in the integral over all black hole background metrics. By functionally differentiating the path integral one obtains an energy momentum tensor which is finite even on the horizon of a black hole. This energy momentum tensor has an anomalous trace. More... »

PAGES

133-148

References to SciGraph publications

  • 1974-09. Trace anomalies in dimensional regularization in IL NUOVO CIMENTO A (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01626516

    DOI

    http://dx.doi.org/10.1007/bf01626516

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051971777


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England", 
              "id": "http://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawking", 
            "givenName": "S. W.", 
            "id": "sg:person.012212614165.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02748300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037400473", 
              "https://doi.org/10.1007/bf02748300"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-06", 
        "datePublishedReg": "1977-06-01", 
        "description": "This paper describes a technique for regularizing quadratic path integrals on a curved background spacetime. One forms a generalized zeta function from the eigenvalues of the differential operator that appears in the action integral. The zeta function is a meromorphic function and its gradient at the origin is defined to be the determinant of the operator. This technique agrees with dimensional regularization where one generalises ton dimensions by adding extra flat dimensions. The generalized zeta function can be expressed as a Mellin transform of the kernel of the heat equation which describes diffusion over the four dimensional spacetime manifold in a fith dimension of parameter time. Using the asymptotic expansion for the heat kernel, one can deduce the behaviour of the path integral under scale transformations of the background metric. This suggests that there may be a natural cut off in the integral over all black hole background metrics. By functionally differentiating the path integral one obtains an energy momentum tensor which is finite even on the horizon of a black hole. This energy momentum tensor has an anomalous trace.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01626516", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "energy-momentum tensor", 
          "generalized zeta function", 
          "path integral", 
          "zeta function", 
          "momentum tensor", 
          "dimensional spacetime manifold", 
          "zeta function regularization", 
          "curved background spacetime", 
          "differential operators", 
          "spacetime manifold", 
          "heat equation", 
          "action integral", 
          "background metric", 
          "background spacetime", 
          "curved spacetime", 
          "asymptotic expansion", 
          "function regularization", 
          "black holes", 
          "heat kernel", 
          "dimensional regularization", 
          "anomalous trace", 
          "integral one", 
          "Mellin transform", 
          "integrals", 
          "meromorphic functions", 
          "scale transformation", 
          "spacetime", 
          "parameters time", 
          "regularization", 
          "natural cut", 
          "tensor", 
          "operators", 
          "kernel", 
          "eigenvalues", 
          "equations", 
          "manifold", 
          "flat dimension", 
          "dimensions", 
          "function", 
          "technique", 
          "holes", 
          "metrics", 
          "horizon", 
          "diffusion", 
          "gradient", 
          "expansion", 
          "one", 
          "transformation", 
          "transform", 
          "behavior", 
          "traces", 
          "cut", 
          "time", 
          "background", 
          "origin", 
          "determinants", 
          "paper"
        ], 
        "name": "Zeta function regularization of path integrals in curved spacetime", 
        "pagination": "133-148", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051971777"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01626516"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01626516", 
          "https://app.dimensions.ai/details/publication/pub.1051971777"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_130.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01626516"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01626516'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01626516'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01626516'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01626516'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      83 URIs      74 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01626516 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne956f6cb78e54305873f66951b7107fe
    4 schema:citation sg:pub.10.1007/bf02748300
    5 schema:datePublished 1977-06
    6 schema:datePublishedReg 1977-06-01
    7 schema:description This paper describes a technique for regularizing quadratic path integrals on a curved background spacetime. One forms a generalized zeta function from the eigenvalues of the differential operator that appears in the action integral. The zeta function is a meromorphic function and its gradient at the origin is defined to be the determinant of the operator. This technique agrees with dimensional regularization where one generalises ton dimensions by adding extra flat dimensions. The generalized zeta function can be expressed as a Mellin transform of the kernel of the heat equation which describes diffusion over the four dimensional spacetime manifold in a fith dimension of parameter time. Using the asymptotic expansion for the heat kernel, one can deduce the behaviour of the path integral under scale transformations of the background metric. This suggests that there may be a natural cut off in the integral over all black hole background metrics. By functionally differentiating the path integral one obtains an energy momentum tensor which is finite even on the horizon of a black hole. This energy momentum tensor has an anomalous trace.
    8 schema:genre article
    9 schema:isAccessibleForFree true
    10 schema:isPartOf N25860455bb754391bba6e857a2158bc5
    11 N55c1e758cf8d45a7ba0d0bd5031f1de3
    12 sg:journal.1136216
    13 schema:keywords Mellin transform
    14 action integral
    15 anomalous trace
    16 asymptotic expansion
    17 background
    18 background metric
    19 background spacetime
    20 behavior
    21 black holes
    22 curved background spacetime
    23 curved spacetime
    24 cut
    25 determinants
    26 differential operators
    27 diffusion
    28 dimensional regularization
    29 dimensional spacetime manifold
    30 dimensions
    31 eigenvalues
    32 energy-momentum tensor
    33 equations
    34 expansion
    35 flat dimension
    36 function
    37 function regularization
    38 generalized zeta function
    39 gradient
    40 heat equation
    41 heat kernel
    42 holes
    43 horizon
    44 integral one
    45 integrals
    46 kernel
    47 manifold
    48 meromorphic functions
    49 metrics
    50 momentum tensor
    51 natural cut
    52 one
    53 operators
    54 origin
    55 paper
    56 parameters time
    57 path integral
    58 regularization
    59 scale transformation
    60 spacetime
    61 spacetime manifold
    62 technique
    63 tensor
    64 time
    65 traces
    66 transform
    67 transformation
    68 zeta function
    69 zeta function regularization
    70 schema:name Zeta function regularization of path integrals in curved spacetime
    71 schema:pagination 133-148
    72 schema:productId N423c4d7b2cbf4b8c9d0a948c45e399b1
    73 Nd3eb0a4771104f05934625ee198c4207
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051971777
    75 https://doi.org/10.1007/bf01626516
    76 schema:sdDatePublished 2022-11-24T20:44
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N77e2a3d571c04edeaf140166bb94f91f
    79 schema:url https://doi.org/10.1007/bf01626516
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N25860455bb754391bba6e857a2158bc5 schema:issueNumber 2
    84 rdf:type schema:PublicationIssue
    85 N423c4d7b2cbf4b8c9d0a948c45e399b1 schema:name dimensions_id
    86 schema:value pub.1051971777
    87 rdf:type schema:PropertyValue
    88 N55c1e758cf8d45a7ba0d0bd5031f1de3 schema:volumeNumber 55
    89 rdf:type schema:PublicationVolume
    90 N77e2a3d571c04edeaf140166bb94f91f schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Nd3eb0a4771104f05934625ee198c4207 schema:name doi
    93 schema:value 10.1007/bf01626516
    94 rdf:type schema:PropertyValue
    95 Ne956f6cb78e54305873f66951b7107fe rdf:first sg:person.012212614165.22
    96 rdf:rest rdf:nil
    97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Mathematical Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Pure Mathematics
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1136216 schema:issn 0010-3616
    104 1432-0916
    105 schema:name Communications in Mathematical Physics
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.012212614165.22 schema:affiliation grid-institutes:grid.5335.0
    109 schema:familyName Hawking
    110 schema:givenName S. W.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
    112 rdf:type schema:Person
    113 sg:pub.10.1007/bf02748300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037400473
    114 https://doi.org/10.1007/bf02748300
    115 rdf:type schema:CreativeWork
    116 grid-institutes:grid.5335.0 schema:alternateName Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England
    117 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 9EW, Cambridge, England
    118 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...