Absence of classical lumps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-06

AUTHORS

R. Weder

ABSTRACT

Solutions of the equations of classical Yang-Mills theory in four dimensional Minkowski space are studied. It is proved (Theorem 1) that there is no finite energy (nonsingular) solution of the Yang-Mills equations having the property that there exists ɛ,R,t0>0 such that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E_R (t) = \int\limits_{|\bar x| \leqq R} {\theta _{00} (t,\bar x)d^3 \bar x \geqq \varepsilon foreveryt > t_0 ,} $$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\theta _{00} (\bar x,t)$$ \end{document} being the energy density. Previously known theorems on the absence of finite energy nonsingular solutions that radiate no energy out to spatial infinity are particular cases of Theorem 1. The result stated in Theorem 1 is not restricted to the Yang-Mills equations. In fact, it extends to a large class of relativistic equations (Theorem 2). More... »

PAGES

161-164

References to SciGraph publications

  • 1977-06. There are no classical glueballs in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01625774

    DOI

    http://dx.doi.org/10.1007/bf01625774

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028282085


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lyman Laboratory of Physics, Harvard University, 02138, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Lyman Laboratory of Physics, Harvard University, 02138, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weder", 
            "givenName": "R.", 
            "id": "sg:person.07476157133.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476157133.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01626513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018935405", 
              "https://doi.org/10.1007/bf01626513"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-06", 
        "datePublishedReg": "1977-06-01", 
        "description": "Solutions of the equations of classical Yang-Mills theory in four dimensional Minkowski space are studied. It is proved (Theorem 1) that there is no finite energy (nonsingular) solution of the Yang-Mills equations having the property that there exists \u025b,R,t0>0 such that\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$E_R (t) = \\int\\limits_{|\\bar x| \\leqq R} {\\theta _{00} (t,\\bar x)d^3 \\bar x \\geqq \\varepsilon foreveryt > t_0 ,} $$\n\\end{document}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\theta _{00} (\\bar x,t)$$\n\\end{document} being the energy density. Previously known theorems on the absence of finite energy nonsingular solutions that radiate no energy out to spatial infinity are particular cases of Theorem 1. The result stated in Theorem 1 is not restricted to the Yang-Mills equations. In fact, it extends to a large class of relativistic equations (Theorem 2).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01625774", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "57"
          }
        ], 
        "keywords": [
          "Yang-Mills equations", 
          "Theorem 1", 
          "classical Yang-Mills theory", 
          "finite energy solutions", 
          "dimensional Minkowski space", 
          "Yang-Mills theory", 
          "nonsingular solutions", 
          "Minkowski space", 
          "relativistic equations", 
          "spatial infinity", 
          "large class", 
          "equations", 
          "particular case", 
          "energy solutions", 
          "solution", 
          "theorem", 
          "infinity", 
          "theory", 
          "space", 
          "energy density", 
          "class", 
          "properties", 
          "energy", 
          "density", 
          "cases", 
          "fact", 
          "results", 
          "lump", 
          "absence"
        ], 
        "name": "Absence of classical lumps", 
        "pagination": "161-164", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028282085"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01625774"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01625774", 
          "https://app.dimensions.ai/details/publication/pub.1028282085"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_111.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01625774"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01625774'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01625774'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01625774'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01625774'


     

    This table displays all metadata directly associated to this object as RDF triples.

    90 TRIPLES      21 PREDICATES      55 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01625774 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nf8b51cfc584445ee94856d1e57d52c2d
    4 schema:citation sg:pub.10.1007/bf01626513
    5 schema:datePublished 1977-06
    6 schema:datePublishedReg 1977-06-01
    7 schema:description Solutions of the equations of classical Yang-Mills theory in four dimensional Minkowski space are studied. It is proved (Theorem 1) that there is no finite energy (nonsingular) solution of the Yang-Mills equations having the property that there exists ɛ,R,t0>0 such that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E_R (t) = \int\limits_{|\bar x| \leqq R} {\theta _{00} (t,\bar x)d^3 \bar x \geqq \varepsilon foreveryt > t_0 ,} $$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\theta _{00} (\bar x,t)$$ \end{document} being the energy density. Previously known theorems on the absence of finite energy nonsingular solutions that radiate no energy out to spatial infinity are particular cases of Theorem 1. The result stated in Theorem 1 is not restricted to the Yang-Mills equations. In fact, it extends to a large class of relativistic equations (Theorem 2).
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N058160187eac4b94ab72517ce0b36c4a
    11 N87722e3a056343869b0824f4fb86c222
    12 sg:journal.1136216
    13 schema:keywords Minkowski space
    14 Theorem 1
    15 Yang-Mills equations
    16 Yang-Mills theory
    17 absence
    18 cases
    19 class
    20 classical Yang-Mills theory
    21 density
    22 dimensional Minkowski space
    23 energy
    24 energy density
    25 energy solutions
    26 equations
    27 fact
    28 finite energy solutions
    29 infinity
    30 large class
    31 lump
    32 nonsingular solutions
    33 particular case
    34 properties
    35 relativistic equations
    36 results
    37 solution
    38 space
    39 spatial infinity
    40 theorem
    41 theory
    42 schema:name Absence of classical lumps
    43 schema:pagination 161-164
    44 schema:productId Nb441aedadc224153b6ec975b9a025894
    45 Ncbd4c5205a28435d9123297c1feaaa34
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028282085
    47 https://doi.org/10.1007/bf01625774
    48 schema:sdDatePublished 2022-12-01T06:17
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Nd7e7a3fd22c2417e80925fdfdc84d4a2
    51 schema:url https://doi.org/10.1007/bf01625774
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N058160187eac4b94ab72517ce0b36c4a schema:issueNumber 2
    56 rdf:type schema:PublicationIssue
    57 N87722e3a056343869b0824f4fb86c222 schema:volumeNumber 57
    58 rdf:type schema:PublicationVolume
    59 Nb441aedadc224153b6ec975b9a025894 schema:name dimensions_id
    60 schema:value pub.1028282085
    61 rdf:type schema:PropertyValue
    62 Ncbd4c5205a28435d9123297c1feaaa34 schema:name doi
    63 schema:value 10.1007/bf01625774
    64 rdf:type schema:PropertyValue
    65 Nd7e7a3fd22c2417e80925fdfdc84d4a2 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nf8b51cfc584445ee94856d1e57d52c2d rdf:first sg:person.07476157133.80
    68 rdf:rest rdf:nil
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Applied Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136216 schema:issn 0010-3616
    76 1432-0916
    77 schema:name Communications in Mathematical Physics
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.07476157133.80 schema:affiliation grid-institutes:grid.38142.3c
    81 schema:familyName Weder
    82 schema:givenName R.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07476157133.80
    84 rdf:type schema:Person
    85 sg:pub.10.1007/bf01626513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018935405
    86 https://doi.org/10.1007/bf01626513
    87 rdf:type schema:CreativeWork
    88 grid-institutes:grid.38142.3c schema:alternateName Lyman Laboratory of Physics, Harvard University, 02138, Cambridge, Massachusetts, USA
    89 schema:name Lyman Laboratory of Physics, Harvard University, 02138, Cambridge, Massachusetts, USA
    90 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...