All unitary ray representations of the conformal group SU(2,2) with positive energy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1977-02

AUTHORS

G. Mack

ABSTRACT

We find all those unitary irreducible representations of the ∞-sheeted covering group\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde G$$ \end{document} of the conformal group SU(2,2)/ℤ4 which have positive energyP0≧0. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j1,j2) of the Lorentz group SL(2ℂ). They all decompose into a finite number of unitary irreducible representations of the Poincaré subgroup with dilations. More... »

PAGES

1-28

References to SciGraph publications

  • 1975-02. The significance of conformal inversion in quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1977-06. Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1966-06. Unitary irreducible representations ofSU(2,2) in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1973-12. Field representations of the conformal group with continuous mass spectrum in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1975-10. Global conformal invariance in quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1975. Osterwalder-Schrader positivity in conformal invariant quantum field theory in TRENDS IN ELEMENTARY PARTICLE THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01613145

    DOI

    http://dx.doi.org/10.1007/bf01613145

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005962913


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "II. Institut f\u00fcr Theoretische Physik der Universit\u00e4t, D-2000, Hamburg 50, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "II. Institut f\u00fcr Theoretische Physik der Universit\u00e4t, D-2000, Hamburg 50, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mack", 
            "givenName": "G.", 
            "id": "sg:person.014723763737.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014723763737.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01645412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034160359", 
              "https://doi.org/10.1007/bf01645412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01609130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047725585", 
              "https://doi.org/10.1007/bf01609130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01614094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021304680", 
              "https://doi.org/10.1007/bf01614094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01608988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007469545", 
              "https://doi.org/10.1007/bf01608988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-07160-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000516048", 
              "https://doi.org/10.1007/3-540-07160-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025559756", 
              "https://doi.org/10.1007/bf01645506"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-02", 
        "datePublishedReg": "1977-02-01", 
        "description": "We find all those unitary irreducible representations of the \u221e-sheeted covering group\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\tilde G$$\n\\end{document} of the conformal group SU(2,2)/\u21244 which have positive energyP0\u22670. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j1,j2) of the Lorentz group SL(2\u2102). They all decompose into a finite number of unitary irreducible representations of the Poincar\u00e9 subgroup with dilations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01613145", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "unitary irreducible representations", 
          "irreducible representations", 
          "conformal group", 
          "finite-dimensional irreducible representations", 
          "dimensional irreducible representations", 
          "Poincar\u00e9 subgroup", 
          "ray representation", 
          "Lorentz group", 
          "finite number", 
          "field representation", 
          "positive energy", 
          "representation", 
          "dimensiond", 
          "covering", 
          "energy", 
          "number", 
          "subgroups", 
          "group", 
          "dilation"
        ], 
        "name": "All unitary ray representations of the conformal group SU(2,2) with positive energy", 
        "pagination": "1-28", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005962913"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01613145"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01613145", 
          "https://app.dimensions.ai/details/publication/pub.1005962913"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_142.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01613145"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      53 URIs      36 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01613145 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 anzsrc-for:02
    5 anzsrc-for:0206
    6 schema:author Naa0600b209bd4287921ad6abac132a54
    7 schema:citation sg:pub.10.1007/3-540-07160-1_3
    8 sg:pub.10.1007/bf01608988
    9 sg:pub.10.1007/bf01609130
    10 sg:pub.10.1007/bf01614094
    11 sg:pub.10.1007/bf01645412
    12 sg:pub.10.1007/bf01645506
    13 schema:datePublished 1977-02
    14 schema:datePublishedReg 1977-02-01
    15 schema:description We find all those unitary irreducible representations of the ∞-sheeted covering group\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde G$$ \end{document} of the conformal group SU(2,2)/ℤ4 which have positive energyP0≧0. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j1,j2) of the Lorentz group SL(2ℂ). They all decompose into a finite number of unitary irreducible representations of the Poincaré subgroup with dilations.
    16 schema:genre article
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N121b9c1d6bb446d6a4bd5e6ec6539781
    19 N38d0ebbec6134f4ab765512254a5d6f9
    20 sg:journal.1136216
    21 schema:keywords Lorentz group
    22 Poincaré subgroup
    23 conformal group
    24 covering
    25 dilation
    26 dimensional irreducible representations
    27 dimensiond
    28 energy
    29 field representation
    30 finite number
    31 finite-dimensional irreducible representations
    32 group
    33 irreducible representations
    34 number
    35 positive energy
    36 ray representation
    37 representation
    38 subgroups
    39 unitary irreducible representations
    40 schema:name All unitary ray representations of the conformal group SU(2,2) with positive energy
    41 schema:pagination 1-28
    42 schema:productId N33090c045c7e4ff49e13865b7ed436e3
    43 Na36dbfe3f7e74fed966288660b87e477
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962913
    45 https://doi.org/10.1007/bf01613145
    46 schema:sdDatePublished 2022-11-24T20:45
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N5c9a793ce9e44c839446c9d224f8d00f
    49 schema:url https://doi.org/10.1007/bf01613145
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N121b9c1d6bb446d6a4bd5e6ec6539781 schema:issueNumber 1
    54 rdf:type schema:PublicationIssue
    55 N33090c045c7e4ff49e13865b7ed436e3 schema:name doi
    56 schema:value 10.1007/bf01613145
    57 rdf:type schema:PropertyValue
    58 N38d0ebbec6134f4ab765512254a5d6f9 schema:volumeNumber 55
    59 rdf:type schema:PublicationVolume
    60 N5c9a793ce9e44c839446c9d224f8d00f schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Na36dbfe3f7e74fed966288660b87e477 schema:name dimensions_id
    63 schema:value pub.1005962913
    64 rdf:type schema:PropertyValue
    65 Naa0600b209bd4287921ad6abac132a54 rdf:first sg:person.014723763737.25
    66 rdf:rest rdf:nil
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Physics
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Physical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Quantum Physics
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1136216 schema:issn 0010-3616
    83 1432-0916
    84 schema:name Communications in Mathematical Physics
    85 schema:publisher Springer Nature
    86 rdf:type schema:Periodical
    87 sg:person.014723763737.25 schema:affiliation grid-institutes:None
    88 schema:familyName Mack
    89 schema:givenName G.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014723763737.25
    91 rdf:type schema:Person
    92 sg:pub.10.1007/3-540-07160-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000516048
    93 https://doi.org/10.1007/3-540-07160-1_3
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01608988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007469545
    96 https://doi.org/10.1007/bf01608988
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01609130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047725585
    99 https://doi.org/10.1007/bf01609130
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01614094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021304680
    102 https://doi.org/10.1007/bf01614094
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01645412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034160359
    105 https://doi.org/10.1007/bf01645412
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01645506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025559756
    108 https://doi.org/10.1007/bf01645506
    109 rdf:type schema:CreativeWork
    110 grid-institutes:None schema:alternateName II. Institut für Theoretische Physik der Universität, D-2000, Hamburg 50, Germany
    111 schema:name II. Institut für Theoretische Physik der Universität, D-2000, Hamburg 50, Germany
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...