All unitary ray representations of the conformal group SU(2,2) with positive energy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1977-02

AUTHORS

G. Mack

ABSTRACT

We find all those unitary irreducible representations of the ∞-sheeted covering group of the conformal group SU(2,2)/ℤ4 which have positive energyP0≧0. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j1,j2) of the Lorentz group SL(2ℂ). They all decompose into a finite number of unitary irreducible representations of the Poincaré subgroup with dilations. More... »

PAGES

1-28

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01613145

DOI

http://dx.doi.org/10.1007/bf01613145

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005962913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "II. Institut f\u00fcr Theoretische Physik der Universit\u00e4t, D-2000, Hamburg 50, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mack", 
        "givenName": "G.", 
        "id": "sg:person.014723763737.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014723763737.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-07160-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000516048", 
          "https://doi.org/10.1007/3-540-07160-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007469545", 
          "https://doi.org/10.1007/bf01608988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007469545", 
          "https://doi.org/10.1007/bf01608988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(69)90278-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012154956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021304680", 
          "https://doi.org/10.1007/bf01614094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021304680", 
          "https://doi.org/10.1007/bf01614094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025559756", 
          "https://doi.org/10.1007/bf01645506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025559756", 
          "https://doi.org/10.1007/bf01645506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034160359", 
          "https://doi.org/10.1007/bf01645412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034160359", 
          "https://doi.org/10.1007/bf01645412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.2180100302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035906093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.2180100302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035906093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047725585", 
          "https://doi.org/10.1007/bf01609130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047725585", 
          "https://doi.org/10.1007/bf01609130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1664804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1705108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083660678"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-02", 
    "datePublishedReg": "1977-02-01", 
    "description": "We find all those unitary irreducible representations of the \u221e-sheeted covering group of the conformal group SU(2,2)/\u21244 which have positive energyP0\u22670. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j1,j2) of the Lorentz group SL(2\u2102). They all decompose into a finite number of unitary irreducible representations of the Poincar\u00e9 subgroup with dilations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01613145", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "All unitary ray representations of the conformal group SU(2,2) with positive energy", 
    "pagination": "1-28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c676610c77d9a38421c70d371141ddaa204d663a9c5af2a584382c156f3888e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01613145"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005962913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01613145", 
      "https://app.dimensions.ai/details/publication/pub.1005962913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01613145"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01613145'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01613145 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf92372a251034591aa10280921ee3a93
4 schema:citation sg:pub.10.1007/3-540-07160-1_3
5 sg:pub.10.1007/bf01608988
6 sg:pub.10.1007/bf01609130
7 sg:pub.10.1007/bf01614094
8 sg:pub.10.1007/bf01645412
9 sg:pub.10.1007/bf01645506
10 https://doi.org/10.1002/prop.2180100302
11 https://doi.org/10.1016/0003-4916(69)90278-4
12 https://doi.org/10.1063/1.1664804
13 https://doi.org/10.1063/1.1705108
14 https://doi.org/10.2307/1968551
15 https://doi.org/10.2307/1970331
16 https://doi.org/10.2307/1970887
17 https://doi.org/10.2307/2372876
18 https://doi.org/10.24033/bsmf.1711
19 schema:datePublished 1977-02
20 schema:datePublishedReg 1977-02-01
21 schema:description We find all those unitary irreducible representations of the ∞-sheeted covering group of the conformal group SU(2,2)/ℤ4 which have positive energyP0≧0. They are all finite component field representations and are labelled by dimensiond and a finite dimensional irreducible representation (j1,j2) of the Lorentz group SL(2ℂ). They all decompose into a finite number of unitary irreducible representations of the Poincaré subgroup with dilations.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N00361e9687564cf99ccb9a5d416b5e67
26 N0adb811c4514400fabc5aab1b0a70981
27 sg:journal.1136216
28 schema:name All unitary ray representations of the conformal group SU(2,2) with positive energy
29 schema:pagination 1-28
30 schema:productId N9aabff8d373b45648661dc9c0fe34ae4
31 Nc5b251e1a1754c568ba1c4b8225c1d69
32 Neb8df2abcd08446984293aa9578f309d
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962913
34 https://doi.org/10.1007/bf01613145
35 schema:sdDatePublished 2019-04-11T13:33
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N39164ee414234c6e805518eb7476d7fa
38 schema:url http://link.springer.com/10.1007/BF01613145
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N00361e9687564cf99ccb9a5d416b5e67 schema:volumeNumber 55
43 rdf:type schema:PublicationVolume
44 N0adb811c4514400fabc5aab1b0a70981 schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N39164ee414234c6e805518eb7476d7fa schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N9aabff8d373b45648661dc9c0fe34ae4 schema:name doi
49 schema:value 10.1007/bf01613145
50 rdf:type schema:PropertyValue
51 Nc5b251e1a1754c568ba1c4b8225c1d69 schema:name readcube_id
52 schema:value 1c676610c77d9a38421c70d371141ddaa204d663a9c5af2a584382c156f3888e
53 rdf:type schema:PropertyValue
54 Ne2bfde33990c4757989f8f4e7c96059d schema:name II. Institut für Theoretische Physik der Universität, D-2000, Hamburg 50, Germany
55 rdf:type schema:Organization
56 Neb8df2abcd08446984293aa9578f309d schema:name dimensions_id
57 schema:value pub.1005962913
58 rdf:type schema:PropertyValue
59 Nf92372a251034591aa10280921ee3a93 rdf:first sg:person.014723763737.25
60 rdf:rest rdf:nil
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136216 schema:issn 0010-3616
68 1432-0916
69 schema:name Communications in Mathematical Physics
70 rdf:type schema:Periodical
71 sg:person.014723763737.25 schema:affiliation Ne2bfde33990c4757989f8f4e7c96059d
72 schema:familyName Mack
73 schema:givenName G.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014723763737.25
75 rdf:type schema:Person
76 sg:pub.10.1007/3-540-07160-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000516048
77 https://doi.org/10.1007/3-540-07160-1_3
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01608988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007469545
80 https://doi.org/10.1007/bf01608988
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01609130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047725585
83 https://doi.org/10.1007/bf01609130
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01614094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021304680
86 https://doi.org/10.1007/bf01614094
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01645412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034160359
89 https://doi.org/10.1007/bf01645412
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01645506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025559756
92 https://doi.org/10.1007/bf01645506
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/prop.2180100302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035906093
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0003-4916(69)90278-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012154956
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1664804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742856
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1705108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774775
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1968551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673975
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/1970331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675662
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/1970887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676195
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/2372876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899479
109 rdf:type schema:CreativeWork
110 https://doi.org/10.24033/bsmf.1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660678
111 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...