Integrable Hamiltonian systems and interactions through quadratic constraints View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1976-10

AUTHORS

K. Pohlmeyer

ABSTRACT

On-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems.

PAGES

207-221

Journal

TITLE

Communications in Mathematical Physics

ISSUE

3

VOLUME

46

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01609119

DOI

http://dx.doi.org/10.1007/bf01609119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052377673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "II. Institut f\u00fcr Theoretische Physik der Universit\u00e4t Hamburg, D-2000, Hamburg 50, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pohlmeyer", 
        "givenName": "K.", 
        "id": "sg:person.014203126562.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203126562.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160210503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009790301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160210503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009790301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1042317243", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-94717-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042317243", 
          "https://doi.org/10.1007/978-3-322-94717-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-94717-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042317243", 
          "https://doi.org/10.1007/978-3-322-94717-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1666595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057744668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.166.1568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.166.1568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.31.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.31.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-10", 
    "datePublishedReg": "1976-10-01", 
    "description": "On-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01609119", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Integrable Hamiltonian systems and interactions through quadratic constraints", 
    "pagination": "207-221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f97df8c2d3293e09bedc834141a0515752bd1f38891d68098cd71524be682349"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01609119"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052377673"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01609119", 
      "https://app.dimensions.ai/details/publication/pub.1052377673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01609119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01609119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01609119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01609119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01609119'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      20 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01609119 schema:author Nf02188f9c5424c5d802e6283aeadcc1a
2 schema:citation sg:pub.10.1007/978-3-322-94717-8
3 https://app.dimensions.ai/details/publication/pub.1042317243
4 https://doi.org/10.1002/cpa.3160210503
5 https://doi.org/10.1063/1.1666595
6 https://doi.org/10.1103/physrev.166.1568
7 https://doi.org/10.1103/physrevlett.19.1095
8 https://doi.org/10.1103/physrevlett.31.125
9 schema:datePublished 1976-10
10 schema:datePublishedReg 1976-10-01
11 schema:description On-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N248d1b08d44943c28f2ee023f5357f21
16 Nd8ed3ce20c2b4406af61ce5cd59c37d9
17 sg:journal.1136216
18 schema:name Integrable Hamiltonian systems and interactions through quadratic constraints
19 schema:pagination 207-221
20 schema:productId N4399563bd389454a829f1d14c88f2f36
21 N83d49f0e90cf4ea48e51a94f7d862d8c
22 Nd819c34581d044209a6ee7ab2df61382
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052377673
24 https://doi.org/10.1007/bf01609119
25 schema:sdDatePublished 2019-04-11T13:29
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nf40f275d0061411d82ab91bea7f2f3d1
28 schema:url http://link.springer.com/10.1007/BF01609119
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N248d1b08d44943c28f2ee023f5357f21 schema:volumeNumber 46
33 rdf:type schema:PublicationVolume
34 N4399563bd389454a829f1d14c88f2f36 schema:name doi
35 schema:value 10.1007/bf01609119
36 rdf:type schema:PropertyValue
37 N83d49f0e90cf4ea48e51a94f7d862d8c schema:name readcube_id
38 schema:value f97df8c2d3293e09bedc834141a0515752bd1f38891d68098cd71524be682349
39 rdf:type schema:PropertyValue
40 Nd819c34581d044209a6ee7ab2df61382 schema:name dimensions_id
41 schema:value pub.1052377673
42 rdf:type schema:PropertyValue
43 Nd8ed3ce20c2b4406af61ce5cd59c37d9 schema:issueNumber 3
44 rdf:type schema:PublicationIssue
45 Nf02188f9c5424c5d802e6283aeadcc1a rdf:first sg:person.014203126562.17
46 rdf:rest rdf:nil
47 Nf40f275d0061411d82ab91bea7f2f3d1 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 sg:journal.1136216 schema:issn 0010-3616
50 1432-0916
51 schema:name Communications in Mathematical Physics
52 rdf:type schema:Periodical
53 sg:person.014203126562.17 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
54 schema:familyName Pohlmeyer
55 schema:givenName K.
56 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203126562.17
57 rdf:type schema:Person
58 sg:pub.10.1007/978-3-322-94717-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042317243
59 https://doi.org/10.1007/978-3-322-94717-8
60 rdf:type schema:CreativeWork
61 https://app.dimensions.ai/details/publication/pub.1042317243 schema:CreativeWork
62 https://doi.org/10.1002/cpa.3160210503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009790301
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1063/1.1666595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744668
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1103/physrev.166.1568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437486
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1103/physrevlett.19.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770056
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1103/physrevlett.31.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060777396
71 rdf:type schema:CreativeWork
72 https://www.grid.ac/institutes/grid.9026.d schema:alternateName University of Hamburg
73 schema:name II. Institut für Theoretische Physik der Universität Hamburg, D-2000, Hamburg 50, Federal Republic of Germany
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...