A combined conjugate-gradient quasi-Newton minimization algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-12

AUTHORS

A. G. Buckley

ABSTRACT

Although quasi-Newton algorithms generally converge in fewer iterations than conjugate gradient algorithms, they have the disadvantage of requiring substantially more storage. An algorithm will be described which uses an intermediate (and variable) amount of storage and which demonstrates convergence which is also intermediate, that is, generally better than that observed for conjugate gradient algorithms but not so good as in a quasi-Newton approach. The new algorithm uses a strategy of generating a form of conjugate gradient search direction for most iterations, but it periodically uses a quasi-Newton step to improve the convergence. Some theoretical background for a new algorithm has been presented in an earlier paper; here we examine properties of the new algorithm and its implementation. We also present the results of some computational experience. More... »

PAGES

200-210

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01609018

DOI

http://dx.doi.org/10.1007/bf01609018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027194903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Concordia University", 
          "id": "https://www.grid.ac/institutes/grid.410319.e", 
          "name": [
            "Concordia University, Montreal, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buckley", 
        "givenName": "A. G.", 
        "id": "sg:person.011117254225.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117254225.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01580369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005266469", 
          "https://doi.org/10.1007/bf01580369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005266469", 
          "https://doi.org/10.1007/bf01580369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01593790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006434394", 
          "https://doi.org/10.1007/bf01593790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/13.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007597686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012435566", 
          "https://doi.org/10.1007/bf01609038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012435566", 
          "https://doi.org/10.1007/bf01609038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/6.2.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018099115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-12", 
    "datePublishedReg": "1978-12-01", 
    "description": "Although quasi-Newton algorithms generally converge in fewer iterations than conjugate gradient algorithms, they have the disadvantage of requiring substantially more storage. An algorithm will be described which uses an intermediate (and variable) amount of storage and which demonstrates convergence which is also intermediate, that is, generally better than that observed for conjugate gradient algorithms but not so good as in a quasi-Newton approach. The new algorithm uses a strategy of generating a form of conjugate gradient search direction for most iterations, but it periodically uses a quasi-Newton step to improve the convergence. Some theoretical background for a new algorithm has been presented in an earlier paper; here we examine properties of the new algorithm and its implementation. We also present the results of some computational experience.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01609018", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "A combined conjugate-gradient quasi-Newton minimization algorithm", 
    "pagination": "200-210", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "818b767aef99ecdba725df911522d5f6e702bdae3f307188be760f4eb4b17336"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01609018"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027194903"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01609018", 
      "https://app.dimensions.ai/details/publication/pub.1027194903"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01609018"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01609018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01609018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01609018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01609018'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01609018 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndd17f38635f74474b7940243fe554a7f
4 schema:citation sg:pub.10.1007/bf01580369
5 sg:pub.10.1007/bf01593790
6 sg:pub.10.1007/bf01609038
7 https://doi.org/10.1093/comjnl/13.3.317
8 https://doi.org/10.1093/comjnl/6.2.163
9 https://doi.org/10.6028/jres.049.044
10 schema:datePublished 1978-12
11 schema:datePublishedReg 1978-12-01
12 schema:description Although quasi-Newton algorithms generally converge in fewer iterations than conjugate gradient algorithms, they have the disadvantage of requiring substantially more storage. An algorithm will be described which uses an intermediate (and variable) amount of storage and which demonstrates convergence which is also intermediate, that is, generally better than that observed for conjugate gradient algorithms but not so good as in a quasi-Newton approach. The new algorithm uses a strategy of generating a form of conjugate gradient search direction for most iterations, but it periodically uses a quasi-Newton step to improve the convergence. Some theoretical background for a new algorithm has been presented in an earlier paper; here we examine properties of the new algorithm and its implementation. We also present the results of some computational experience.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N61a6c1194ea54bdbbe26351c2738c817
17 Nd55e2f20f0c845e2b7566c6c5a7a5d25
18 sg:journal.1047630
19 schema:name A combined conjugate-gradient quasi-Newton minimization algorithm
20 schema:pagination 200-210
21 schema:productId N1dea79b0141f4e1daaeea3eefecff608
22 N7a129df97ed74a118cd2b810fc797e5b
23 Nc2591cdc8806494cafb4fdfc90dea99b
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027194903
25 https://doi.org/10.1007/bf01609018
26 schema:sdDatePublished 2019-04-11T13:29
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N0ac3576ad15c4feaab55abee7cf37ee4
29 schema:url http://link.springer.com/10.1007%2FBF01609018
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0ac3576ad15c4feaab55abee7cf37ee4 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N1dea79b0141f4e1daaeea3eefecff608 schema:name dimensions_id
36 schema:value pub.1027194903
37 rdf:type schema:PropertyValue
38 N61a6c1194ea54bdbbe26351c2738c817 schema:volumeNumber 15
39 rdf:type schema:PublicationVolume
40 N7a129df97ed74a118cd2b810fc797e5b schema:name doi
41 schema:value 10.1007/bf01609018
42 rdf:type schema:PropertyValue
43 Nc2591cdc8806494cafb4fdfc90dea99b schema:name readcube_id
44 schema:value 818b767aef99ecdba725df911522d5f6e702bdae3f307188be760f4eb4b17336
45 rdf:type schema:PropertyValue
46 Nd55e2f20f0c845e2b7566c6c5a7a5d25 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 Ndd17f38635f74474b7940243fe554a7f rdf:first sg:person.011117254225.16
49 rdf:rest rdf:nil
50 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
51 schema:name Information and Computing Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
54 schema:name Artificial Intelligence and Image Processing
55 rdf:type schema:DefinedTerm
56 sg:journal.1047630 schema:issn 0025-5610
57 1436-4646
58 schema:name Mathematical Programming
59 rdf:type schema:Periodical
60 sg:person.011117254225.16 schema:affiliation https://www.grid.ac/institutes/grid.410319.e
61 schema:familyName Buckley
62 schema:givenName A. G.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117254225.16
64 rdf:type schema:Person
65 sg:pub.10.1007/bf01580369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005266469
66 https://doi.org/10.1007/bf01580369
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01593790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006434394
69 https://doi.org/10.1007/bf01593790
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf01609038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012435566
72 https://doi.org/10.1007/bf01609038
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1093/comjnl/13.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597686
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1093/comjnl/6.2.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018099115
77 rdf:type schema:CreativeWork
78 https://doi.org/10.6028/jres.049.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597164
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.410319.e schema:alternateName Concordia University
81 schema:name Concordia University, Montreal, Quebec, Canada
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...