A two-dimensional mapping with a strange attractor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-02

AUTHORS

M. Hénon

ABSTRACT

Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a “strange attractor”. We show that the same properties can be observed in a simple mapping of the plane defined by:xi+1=yi+1−axi2,yi+1=bxi. Numerical experiments are carried out fora=1.4,b=0.3. Depending on the initial point (x0,y0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a one-dimensional manifold by a Cantor set. More... »

PAGES

69-77

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01608556

DOI

http://dx.doi.org/10.1007/bf01608556

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038318754


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Observatoire de Nice, F-06300, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e9non", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01360237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002712395", 
          "https://doi.org/10.1007/bf01360237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002712395", 
          "https://doi.org/10.1007/bf01360237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01343190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026108499", 
          "https://doi.org/10.1007/bf01343190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1917-1501070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026769092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037677363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/253513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-02", 
    "datePublishedReg": "1976-02-01", 
    "description": "Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a \u201cstrange attractor\u201d. We show that the same properties can be observed in a simple mapping of the plane defined by:xi+1=yi+1\u2212axi2,yi+1=bxi. Numerical experiments are carried out fora=1.4,b=0.3. Depending on the initial point (x0,y0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a one-dimensional manifold by a Cantor set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01608556", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "A two-dimensional mapping with a strange attractor", 
    "pagination": "69-77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6894963b33e7874a566a55ffaa91314e5fa033d80673be75a59cbbe6f8197f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01608556"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038318754"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01608556", 
      "https://app.dimensions.ai/details/publication/pub.1038318754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01608556"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01608556 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N63f596e3d1e04f7fa119c12f5b2280fc
4 schema:citation sg:pub.10.1007/bf01343190
5 sg:pub.10.1007/bf01360237
6 https://doi.org/10.1090/qam/253513
7 https://doi.org/10.1090/s0002-9947-1917-1501070-3
8 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
9 schema:datePublished 1976-02
10 schema:datePublishedReg 1976-02-01
11 schema:description Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a “strange attractor”. We show that the same properties can be observed in a simple mapping of the plane defined by:xi+1=yi+1−axi2,yi+1=bxi. Numerical experiments are carried out fora=1.4,b=0.3. Depending on the initial point (x0,y0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a one-dimensional manifold by a Cantor set.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N2499b43b9b444717809f26bdee13a6d6
16 Nb04318c303b041c3821ecc22797c62b3
17 sg:journal.1136216
18 schema:name A two-dimensional mapping with a strange attractor
19 schema:pagination 69-77
20 schema:productId N717835dbb1d743c083d1547b6766a1a2
21 Nde00e31d7ec7408aad546be5d55dfd69
22 Nfdf7f3b6b4cd49c18f2241748002b9ac
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038318754
24 https://doi.org/10.1007/bf01608556
25 schema:sdDatePublished 2019-04-11T13:29
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N34c125bd61fb4b34aca9ffb288165d32
28 schema:url http://link.springer.com/10.1007/BF01608556
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N2499b43b9b444717809f26bdee13a6d6 schema:volumeNumber 50
33 rdf:type schema:PublicationVolume
34 N34c125bd61fb4b34aca9ffb288165d32 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N63f596e3d1e04f7fa119c12f5b2280fc rdf:first Nb68660270fdf41e8a9a0223c21142d7c
37 rdf:rest rdf:nil
38 N717835dbb1d743c083d1547b6766a1a2 schema:name readcube_id
39 schema:value b6894963b33e7874a566a55ffaa91314e5fa033d80673be75a59cbbe6f8197f3
40 rdf:type schema:PropertyValue
41 N7bc0e2aced2546eba820141f8f96f847 schema:name Observatoire de Nice, F-06300, Nice, France
42 rdf:type schema:Organization
43 Nb04318c303b041c3821ecc22797c62b3 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 Nb68660270fdf41e8a9a0223c21142d7c schema:affiliation N7bc0e2aced2546eba820141f8f96f847
46 schema:familyName Hénon
47 schema:givenName M.
48 rdf:type schema:Person
49 Nde00e31d7ec7408aad546be5d55dfd69 schema:name doi
50 schema:value 10.1007/bf01608556
51 rdf:type schema:PropertyValue
52 Nfdf7f3b6b4cd49c18f2241748002b9ac schema:name dimensions_id
53 schema:value pub.1038318754
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136216 schema:issn 0010-3616
62 1432-0916
63 schema:name Communications in Mathematical Physics
64 rdf:type schema:Periodical
65 sg:pub.10.1007/bf01343190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026108499
66 https://doi.org/10.1007/bf01343190
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01360237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002712395
69 https://doi.org/10.1007/bf01360237
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1090/qam/253513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348313
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1090/s0002-9947-1917-1501070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026769092
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037677363
76 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...