A two-dimensional mapping with a strange attractor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-02

AUTHORS

M. Hénon

ABSTRACT

Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a “strange attractor”. We show that the same properties can be observed in a simple mapping of the plane defined by:xi+1=yi+1−axi2,yi+1=bxi. Numerical experiments are carried out fora=1.4,b=0.3. Depending on the initial point (x0,y0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a one-dimensional manifold by a Cantor set. More... »

PAGES

69-77

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01608556

DOI

http://dx.doi.org/10.1007/bf01608556

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038318754


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Observatoire de Nice, F-06300, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e9non", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01360237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002712395", 
          "https://doi.org/10.1007/bf01360237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002712395", 
          "https://doi.org/10.1007/bf01360237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01343190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026108499", 
          "https://doi.org/10.1007/bf01343190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1917-1501070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026769092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037677363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/253513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-02", 
    "datePublishedReg": "1976-02-01", 
    "description": "Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a \u201cstrange attractor\u201d. We show that the same properties can be observed in a simple mapping of the plane defined by:xi+1=yi+1\u2212axi2,yi+1=bxi. Numerical experiments are carried out fora=1.4,b=0.3. Depending on the initial point (x0,y0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a one-dimensional manifold by a Cantor set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01608556", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "A two-dimensional mapping with a strange attractor", 
    "pagination": "69-77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6894963b33e7874a566a55ffaa91314e5fa033d80673be75a59cbbe6f8197f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01608556"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038318754"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01608556", 
      "https://app.dimensions.ai/details/publication/pub.1038318754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01608556"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01608556'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01608556 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf19c17a6177d42e58f54dee62ade59c8
4 schema:citation sg:pub.10.1007/bf01343190
5 sg:pub.10.1007/bf01360237
6 https://doi.org/10.1090/qam/253513
7 https://doi.org/10.1090/s0002-9947-1917-1501070-3
8 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
9 schema:datePublished 1976-02
10 schema:datePublishedReg 1976-02-01
11 schema:description Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a “strange attractor”. We show that the same properties can be observed in a simple mapping of the plane defined by:xi+1=yi+1−axi2,yi+1=bxi. Numerical experiments are carried out fora=1.4,b=0.3. Depending on the initial point (x0,y0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a one-dimensional manifold by a Cantor set.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nc126b705f54548578e4a7939e3304579
16 Nd12aea3e8a8d462290208fd4835105b3
17 sg:journal.1136216
18 schema:name A two-dimensional mapping with a strange attractor
19 schema:pagination 69-77
20 schema:productId N34e74c67614a419b999c5b128644fdd5
21 Nc917871a584e483cbf9a0df7c2be1210
22 Nd0301ed8d497422c99a3215b82e3f1cc
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038318754
24 https://doi.org/10.1007/bf01608556
25 schema:sdDatePublished 2019-04-11T13:29
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Ne7be87957060427aa2763e042d5ed50f
28 schema:url http://link.springer.com/10.1007/BF01608556
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N34e74c67614a419b999c5b128644fdd5 schema:name readcube_id
33 schema:value b6894963b33e7874a566a55ffaa91314e5fa033d80673be75a59cbbe6f8197f3
34 rdf:type schema:PropertyValue
35 N426489e8d6774006abc8e1c3964e2999 schema:affiliation N50b9bda500b84538b38c39cea78b81d0
36 schema:familyName Hénon
37 schema:givenName M.
38 rdf:type schema:Person
39 N50b9bda500b84538b38c39cea78b81d0 schema:name Observatoire de Nice, F-06300, Nice, France
40 rdf:type schema:Organization
41 Nc126b705f54548578e4a7939e3304579 schema:volumeNumber 50
42 rdf:type schema:PublicationVolume
43 Nc917871a584e483cbf9a0df7c2be1210 schema:name dimensions_id
44 schema:value pub.1038318754
45 rdf:type schema:PropertyValue
46 Nd0301ed8d497422c99a3215b82e3f1cc schema:name doi
47 schema:value 10.1007/bf01608556
48 rdf:type schema:PropertyValue
49 Nd12aea3e8a8d462290208fd4835105b3 schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 Ne7be87957060427aa2763e042d5ed50f schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nf19c17a6177d42e58f54dee62ade59c8 rdf:first N426489e8d6774006abc8e1c3964e2999
54 rdf:rest rdf:nil
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136216 schema:issn 0010-3616
62 1432-0916
63 schema:name Communications in Mathematical Physics
64 rdf:type schema:Periodical
65 sg:pub.10.1007/bf01343190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026108499
66 https://doi.org/10.1007/bf01343190
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01360237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002712395
69 https://doi.org/10.1007/bf01360237
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1090/qam/253513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348313
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1090/s0002-9947-1917-1501070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026769092
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037677363
76 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...