Statistical analysis of two nonlinear least-squares estimators of sine-wave parameters in the colored-noise case View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-03

AUTHORS

Petre Stoica, Arye Nehorai

ABSTRACT

This paper establishes the large-sample accuracy properties of two nonlinear least-squares estimators (NLSE) of sine-wave parameters: the basic NLSE, which ignores the possible correlation of the noise, and the optimal NLSE, which, besides the sine-wave parameters, also estimates the noise correlation (appropriately parametrized). It is shown that these two NLS estimators have thesame accuracy in large samples. This result provides complete justification for preferring the computationally less expensive basic NLSE over the “optimal” NLSE. Both estimators are shown to achieve the Cramér-Rao Bound (CRB) as the sample size increases. A simple explicit expression for the CRB matrix is provided, which should be useful in studying the performance of sine-wave parameter estimators designed to work in the colored-noise case. More... »

PAGES

3-15

Journal

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01598742

DOI

http://dx.doi.org/10.1007/bf01598742

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044542721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Automatic Control, Polytechnic Institute of Bucharest, Splaiul Independentei 313, R-77 206, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoica", 
        "givenName": "Petre", 
        "id": "sg:person.01277530664.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277530664.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Electrical Engineering, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nehorai", 
        "givenName": "Arye", 
        "id": "sg:person.0665040740.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665040740.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1976.tb02941.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006584467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200114664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039772304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1982.12428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061445063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1983.1103141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061473611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1986.1164843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1986.1164949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1988.196917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086163245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/spect.1988.206199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086198778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1978.268066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086205463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1986.1169104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086234198"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-03", 
    "datePublishedReg": "1989-03-01", 
    "description": "This paper establishes the large-sample accuracy properties of two nonlinear least-squares estimators (NLSE) of sine-wave parameters: the basic NLSE, which ignores the possible correlation of the noise, and the optimal NLSE, which, besides the sine-wave parameters, also estimates the noise correlation (appropriately parametrized). It is shown that these two NLS estimators have thesame accuracy in large samples. This result provides complete justification for preferring the computationally less expensive basic NLSE over the \u201coptimal\u201d NLSE. Both estimators are shown to achieve the Cram\u00e9r-Rao Bound (CRB) as the sample size increases. A simple explicit expression for the CRB matrix is provided, which should be useful in studying the performance of sine-wave parameter estimators designed to work in the colored-noise case.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01598742", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136068", 
        "issn": [
          "0278-081X", 
          "1531-5878"
        ], 
        "name": "Circuits, Systems, and Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Statistical analysis of two nonlinear least-squares estimators of sine-wave parameters in the colored-noise case", 
    "pagination": "3-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d42c37b5a3c75274da7026a3978c3676ca0fb51b3ffa3a12345db310bd486f3f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01598742"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044542721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01598742", 
      "https://app.dimensions.ai/details/publication/pub.1044542721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01598742"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01598742'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01598742'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01598742'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01598742'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01598742 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author N9e73f11007ea45efbe18e9c3437d99dd
4 schema:citation https://doi.org/10.1002/j.1538-7305.1976.tb02941.x
5 https://doi.org/10.1017/s0021900200114664
6 https://doi.org/10.1109/cdc.1978.268066
7 https://doi.org/10.1109/icassp.1986.1169104
8 https://doi.org/10.1109/icassp.1988.196917
9 https://doi.org/10.1109/proc.1982.12428
10 https://doi.org/10.1109/spect.1988.206199
11 https://doi.org/10.1109/tac.1983.1103141
12 https://doi.org/10.1109/tassp.1986.1164843
13 https://doi.org/10.1109/tassp.1986.1164949
14 https://doi.org/10.2307/3212240
15 schema:datePublished 1989-03
16 schema:datePublishedReg 1989-03-01
17 schema:description This paper establishes the large-sample accuracy properties of two nonlinear least-squares estimators (NLSE) of sine-wave parameters: the basic NLSE, which ignores the possible correlation of the noise, and the optimal NLSE, which, besides the sine-wave parameters, also estimates the noise correlation (appropriately parametrized). It is shown that these two NLS estimators have thesame accuracy in large samples. This result provides complete justification for preferring the computationally less expensive basic NLSE over the “optimal” NLSE. Both estimators are shown to achieve the Cramér-Rao Bound (CRB) as the sample size increases. A simple explicit expression for the CRB matrix is provided, which should be useful in studying the performance of sine-wave parameter estimators designed to work in the colored-noise case.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N2d2040dcd9034e27997745706cc45c8c
22 Nf8ab41bd53454cac8e913e838c83ac68
23 sg:journal.1136068
24 schema:name Statistical analysis of two nonlinear least-squares estimators of sine-wave parameters in the colored-noise case
25 schema:pagination 3-15
26 schema:productId N0abef85e54eb42c8acbc840f40d04828
27 N1b48bdb579c848a3a68d1fd87a048004
28 Ne44d611113d64df8b85a4708cf1a5ebf
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044542721
30 https://doi.org/10.1007/bf01598742
31 schema:sdDatePublished 2019-04-11T13:27
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nbdcc740018904d24b80aaf70261f814e
34 schema:url http://link.springer.com/10.1007/BF01598742
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0abef85e54eb42c8acbc840f40d04828 schema:name readcube_id
39 schema:value d42c37b5a3c75274da7026a3978c3676ca0fb51b3ffa3a12345db310bd486f3f
40 rdf:type schema:PropertyValue
41 N1b48bdb579c848a3a68d1fd87a048004 schema:name dimensions_id
42 schema:value pub.1044542721
43 rdf:type schema:PropertyValue
44 N2d2040dcd9034e27997745706cc45c8c schema:volumeNumber 8
45 rdf:type schema:PublicationVolume
46 N9e73f11007ea45efbe18e9c3437d99dd rdf:first sg:person.01277530664.23
47 rdf:rest Nc75c8a24c354427e860b4fe015475fca
48 Nae6d43f5ab264c2b885f744e6b98435f schema:name Department of Automatic Control, Polytechnic Institute of Bucharest, Splaiul Independentei 313, R-77 206, Bucharest, Romania
49 rdf:type schema:Organization
50 Nbdcc740018904d24b80aaf70261f814e schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nc75c8a24c354427e860b4fe015475fca rdf:first sg:person.0665040740.72
53 rdf:rest rdf:nil
54 Ne44d611113d64df8b85a4708cf1a5ebf schema:name doi
55 schema:value 10.1007/bf01598742
56 rdf:type schema:PropertyValue
57 Nf8ab41bd53454cac8e913e838c83ac68 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
60 schema:name Engineering
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
63 schema:name Maritime Engineering
64 rdf:type schema:DefinedTerm
65 sg:journal.1136068 schema:issn 0278-081X
66 1531-5878
67 schema:name Circuits, Systems, and Signal Processing
68 rdf:type schema:Periodical
69 sg:person.01277530664.23 schema:affiliation Nae6d43f5ab264c2b885f744e6b98435f
70 schema:familyName Stoica
71 schema:givenName Petre
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277530664.23
73 rdf:type schema:Person
74 sg:person.0665040740.72 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
75 schema:familyName Nehorai
76 schema:givenName Arye
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665040740.72
78 rdf:type schema:Person
79 https://doi.org/10.1002/j.1538-7305.1976.tb02941.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006584467
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1017/s0021900200114664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039772304
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1109/cdc.1978.268066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086205463
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1109/icassp.1986.1169104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086234198
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/icassp.1988.196917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086163245
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/proc.1982.12428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445063
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/spect.1988.206199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086198778
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/tac.1983.1103141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061473611
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tassp.1986.1164843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519871
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tassp.1986.1164949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519971
98 rdf:type schema:CreativeWork
99 https://doi.org/10.2307/3212240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226463
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
102 schema:name Department of Electrical Engineering, Yale University, 06520, New Haven, CT, USA
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...