Nd:YAP laser pulse compression by three-stage transient stimulated Brillouin and Raman scattering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-08

AUTHORS

V. Kubeček, K. Hamal, I. Procházka, R. Buzelis, V. Girdauskas, A. Dementiev

ABSTRACT

There is a continuous effort to generate stable, powerful picosecond laser pulses for application in spectroscopy, nonlinear optics and parametric light generation, as well. One of the possible methods is the compression of longer nanosecond laser pulses by stimulated Brillouin and stimulated Raman scattering. The advantages of such a technique, in comparison to the used mode locked picosecond lasers, are as follows: the absence of the active and/or passive mode lockers used to generate a train of picosecond pulses, and the absence of a fast electrooptical shutter used to select a single pulse from a train of pulses. The application of stimulated Brillouin and stimulated Raman scattering permits to generate picosecond pulses in the wavelength regions not covered by mode locked lasers. Of special interest is the wavelength region of 0·8 μm, which may be amplified by the attractive Titanium Sapphire lasers. In this paper we are summarizing our results in theoretical modelling and in real generation of picosecond pulses by means of cascaded stimulated Brillouin and Raman scattering. The models of scattering processes have been investigated. The stable generation of 5, 7, 3 picosecond pulses have been optimized for the wavelengths of 0·8, 0·64 and 0·54 μm, respectively. In all these cases, the pulses exhibited the far field pattern close to Gaussian, with the pulse energy ranging from 0·2 to 1 mJ. More... »

PAGES

733-742

References to SciGraph publications

  • 1989-10. Picosecond OPO pumped byQ-switched Nd:YAP laser with SBS compressor in CZECHOSLOVAK JOURNAL OF PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01597807

    DOI

    http://dx.doi.org/10.1007/bf01597807

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017630335


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Nuclear Science and Physical Engineering, Czech Technical University, B\u0159ehov\u00e1 7, 115 19, Praha 1, Czechoslovakia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Faculty of Nuclear Science and Physical Engineering, Czech Technical University, B\u0159ehov\u00e1 7, 115 19, Praha 1, Czechoslovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kube\u010dek", 
            "givenName": "V.", 
            "id": "sg:person.0614627756.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614627756.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Nuclear Science and Physical Engineering, Czech Technical University, B\u0159ehov\u00e1 7, 115 19, Praha 1, Czechoslovakia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Faculty of Nuclear Science and Physical Engineering, Czech Technical University, B\u0159ehov\u00e1 7, 115 19, Praha 1, Czechoslovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamal", 
            "givenName": "K.", 
            "id": "sg:person.014543467205.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543467205.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Nuclear Science and Physical Engineering, Czech Technical University, B\u0159ehov\u00e1 7, 115 19, Praha 1, Czechoslovakia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Faculty of Nuclear Science and Physical Engineering, Czech Technical University, B\u0159ehov\u00e1 7, 115 19, Praha 1, Czechoslovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Proch\u00e1zka", 
            "givenName": "I.", 
            "id": "sg:person.014073000155.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073000155.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Acad, Sci. of Lithuania, Institute of Physics, Po\u017eelos 54, 232600, Vilnius", 
              "id": "http://www.grid.ac/institutes/grid.6441.7", 
              "name": [
                "Acad, Sci. of Lithuania, Institute of Physics, Po\u017eelos 54, 232600, Vilnius"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buzelis", 
            "givenName": "R.", 
            "id": "sg:person.015257476265.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257476265.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Acad, Sci. of Lithuania, Institute of Physics, Po\u017eelos 54, 232600, Vilnius", 
              "id": "http://www.grid.ac/institutes/grid.6441.7", 
              "name": [
                "Acad, Sci. of Lithuania, Institute of Physics, Po\u017eelos 54, 232600, Vilnius"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Girdauskas", 
            "givenName": "V.", 
            "id": "sg:person.0750522403.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750522403.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Acad, Sci. of Lithuania, Institute of Physics, Po\u017eelos 54, 232600, Vilnius", 
              "id": "http://www.grid.ac/institutes/grid.6441.7", 
              "name": [
                "Acad, Sci. of Lithuania, Institute of Physics, Po\u017eelos 54, 232600, Vilnius"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dementiev", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01605401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004209534", 
              "https://doi.org/10.1007/bf01605401"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-08", 
        "datePublishedReg": "1991-08-01", 
        "description": "There is a continuous effort to generate stable, powerful picosecond laser pulses for application in spectroscopy, nonlinear optics and parametric light generation, as well. One of the possible methods is the compression of longer nanosecond laser pulses by stimulated Brillouin and stimulated Raman scattering. The advantages of such a technique, in comparison to the used mode locked picosecond lasers, are as follows: the absence of the active and/or passive mode lockers used to generate a train of picosecond pulses, and the absence of a fast electrooptical shutter used to select a single pulse from a train of pulses. The application of stimulated Brillouin and stimulated Raman scattering permits to generate picosecond pulses in the wavelength regions not covered by mode locked lasers. Of special interest is the wavelength region of 0\u00b78 \u03bcm, which may be amplified by the attractive Titanium Sapphire lasers. In this paper we are summarizing our results in theoretical modelling and in real generation of picosecond pulses by means of cascaded stimulated Brillouin and Raman scattering. The models of scattering processes have been investigated. The stable generation of 5, 7, 3 picosecond pulses have been optimized for the wavelengths of 0\u00b78, 0\u00b764 and 0\u00b754 \u03bcm, respectively. In all these cases, the pulses exhibited the far field pattern close to Gaussian, with the pulse energy ranging from 0\u00b72 to 1 mJ.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01597807", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297212", 
            "issn": [
              "0011-4626", 
              "1572-9486"
            ], 
            "name": "Czechoslovak Journal of Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "41"
          }
        ], 
        "keywords": [
          "picosecond pulses", 
          "laser pulses", 
          "powerful picosecond laser pulses", 
          "wavelength region", 
          "Raman scattering", 
          "passive mode locker", 
          "picosecond laser pulses", 
          "laser pulse compression", 
          "nanosecond laser pulses", 
          "titanium sapphire laser", 
          "sapphire laser", 
          "nonlinear optics", 
          "mode locker", 
          "light generation", 
          "pulse energy", 
          "picosecond laser", 
          "pulse compression", 
          "train of pulses", 
          "stable generation", 
          "Brillouin", 
          "electrooptical shutter", 
          "pulses", 
          "single pulse", 
          "laser", 
          "far field pattern", 
          "theoretical modelling", 
          "scattering", 
          "field patterns", 
          "Raman", 
          "real generation", 
          "optics", 
          "used mode", 
          "wavelength", 
          "shutter", 
          "spectroscopy", 
          "energy", 
          "mode", 
          "possible methods", 
          "generation", 
          "locker", 
          "train", 
          "special interest", 
          "region", 
          "Gaussian", 
          "applications", 
          "transients", 
          "technique", 
          "continuous efforts", 
          "compression", 
          "means", 
          "process", 
          "advantages", 
          "permits", 
          "model", 
          "method", 
          "interest", 
          "comparison", 
          "results", 
          "modelling", 
          "absence", 
          "cases", 
          "paper", 
          "patterns", 
          "efforts", 
          "parametric light generation", 
          "longer nanosecond laser pulses", 
          "fast electrooptical shutter", 
          "attractive Titanium Sapphire lasers", 
          "YAP laser pulse compression", 
          "three-stage transient"
        ], 
        "name": "Nd:YAP laser pulse compression by three-stage transient stimulated Brillouin and Raman scattering", 
        "pagination": "733-742", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017630335"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01597807"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01597807", 
          "https://app.dimensions.ai/details/publication/pub.1017630335"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_258.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01597807"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01597807'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01597807'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01597807'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01597807'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      22 PREDICATES      97 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01597807 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author Nbf414b45c74841cf83abde6c3ea4087a
    4 schema:citation sg:pub.10.1007/bf01605401
    5 schema:datePublished 1991-08
    6 schema:datePublishedReg 1991-08-01
    7 schema:description There is a continuous effort to generate stable, powerful picosecond laser pulses for application in spectroscopy, nonlinear optics and parametric light generation, as well. One of the possible methods is the compression of longer nanosecond laser pulses by stimulated Brillouin and stimulated Raman scattering. The advantages of such a technique, in comparison to the used mode locked picosecond lasers, are as follows: the absence of the active and/or passive mode lockers used to generate a train of picosecond pulses, and the absence of a fast electrooptical shutter used to select a single pulse from a train of pulses. The application of stimulated Brillouin and stimulated Raman scattering permits to generate picosecond pulses in the wavelength regions not covered by mode locked lasers. Of special interest is the wavelength region of 0·8 μm, which may be amplified by the attractive Titanium Sapphire lasers. In this paper we are summarizing our results in theoretical modelling and in real generation of picosecond pulses by means of cascaded stimulated Brillouin and Raman scattering. The models of scattering processes have been investigated. The stable generation of 5, 7, 3 picosecond pulses have been optimized for the wavelengths of 0·8, 0·64 and 0·54 μm, respectively. In all these cases, the pulses exhibited the far field pattern close to Gaussian, with the pulse energy ranging from 0·2 to 1 mJ.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N76e3400cd8ae44aea9f149ebbb30831b
    12 N8a980b06a575418ab2adafd60d0623f3
    13 sg:journal.1297212
    14 schema:keywords Brillouin
    15 Gaussian
    16 Raman
    17 Raman scattering
    18 YAP laser pulse compression
    19 absence
    20 advantages
    21 applications
    22 attractive Titanium Sapphire lasers
    23 cases
    24 comparison
    25 compression
    26 continuous efforts
    27 efforts
    28 electrooptical shutter
    29 energy
    30 far field pattern
    31 fast electrooptical shutter
    32 field patterns
    33 generation
    34 interest
    35 laser
    36 laser pulse compression
    37 laser pulses
    38 light generation
    39 locker
    40 longer nanosecond laser pulses
    41 means
    42 method
    43 mode
    44 mode locker
    45 model
    46 modelling
    47 nanosecond laser pulses
    48 nonlinear optics
    49 optics
    50 paper
    51 parametric light generation
    52 passive mode locker
    53 patterns
    54 permits
    55 picosecond laser
    56 picosecond laser pulses
    57 picosecond pulses
    58 possible methods
    59 powerful picosecond laser pulses
    60 process
    61 pulse compression
    62 pulse energy
    63 pulses
    64 real generation
    65 region
    66 results
    67 sapphire laser
    68 scattering
    69 shutter
    70 single pulse
    71 special interest
    72 spectroscopy
    73 stable generation
    74 technique
    75 theoretical modelling
    76 three-stage transient
    77 titanium sapphire laser
    78 train
    79 train of pulses
    80 transients
    81 used mode
    82 wavelength
    83 wavelength region
    84 schema:name Nd:YAP laser pulse compression by three-stage transient stimulated Brillouin and Raman scattering
    85 schema:pagination 733-742
    86 schema:productId N2d4e4883dc2f418f8f8c0519a51a004e
    87 N31a340d02cc849718d62295ec2bbe0d7
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017630335
    89 https://doi.org/10.1007/bf01597807
    90 schema:sdDatePublished 2022-01-01T18:07
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N7f7a96b181774a71bbdc652bda26a499
    93 schema:url https://doi.org/10.1007/bf01597807
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N06cd69fc9e41474391bd2ad9e47158aa rdf:first sg:person.014543467205.83
    98 rdf:rest Ne97926d9a3054502bf1c52cd067d8982
    99 N2d4e4883dc2f418f8f8c0519a51a004e schema:name dimensions_id
    100 schema:value pub.1017630335
    101 rdf:type schema:PropertyValue
    102 N31a340d02cc849718d62295ec2bbe0d7 schema:name doi
    103 schema:value 10.1007/bf01597807
    104 rdf:type schema:PropertyValue
    105 N3799ffac00444eee9f0922263c514d0f rdf:first sg:person.015257476265.55
    106 rdf:rest Ncbaa9ce9722e4f4db149bacb3eb6e070
    107 N76e3400cd8ae44aea9f149ebbb30831b schema:issueNumber 8
    108 rdf:type schema:PublicationIssue
    109 N7f7a96b181774a71bbdc652bda26a499 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N8a980b06a575418ab2adafd60d0623f3 schema:volumeNumber 41
    112 rdf:type schema:PublicationVolume
    113 N8ac2958462a040b9b919d975cce6a856 schema:affiliation grid-institutes:grid.6441.7
    114 schema:familyName Dementiev
    115 schema:givenName A.
    116 rdf:type schema:Person
    117 Nbf414b45c74841cf83abde6c3ea4087a rdf:first sg:person.0614627756.83
    118 rdf:rest N06cd69fc9e41474391bd2ad9e47158aa
    119 Ncbaa9ce9722e4f4db149bacb3eb6e070 rdf:first sg:person.0750522403.59
    120 rdf:rest Nded64ff5216041b7b37a282fbd95617b
    121 Nded64ff5216041b7b37a282fbd95617b rdf:first N8ac2958462a040b9b919d975cce6a856
    122 rdf:rest rdf:nil
    123 Ne97926d9a3054502bf1c52cd067d8982 rdf:first sg:person.014073000155.77
    124 rdf:rest N3799ffac00444eee9f0922263c514d0f
    125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Physical Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Optical Physics
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1297212 schema:issn 0011-4626
    132 1572-9486
    133 schema:name Czechoslovak Journal of Physics
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.014073000155.77 schema:affiliation grid-institutes:None
    137 schema:familyName Procházka
    138 schema:givenName I.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073000155.77
    140 rdf:type schema:Person
    141 sg:person.014543467205.83 schema:affiliation grid-institutes:None
    142 schema:familyName Hamal
    143 schema:givenName K.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543467205.83
    145 rdf:type schema:Person
    146 sg:person.015257476265.55 schema:affiliation grid-institutes:grid.6441.7
    147 schema:familyName Buzelis
    148 schema:givenName R.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015257476265.55
    150 rdf:type schema:Person
    151 sg:person.0614627756.83 schema:affiliation grid-institutes:None
    152 schema:familyName Kubeček
    153 schema:givenName V.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614627756.83
    155 rdf:type schema:Person
    156 sg:person.0750522403.59 schema:affiliation grid-institutes:grid.6441.7
    157 schema:familyName Girdauskas
    158 schema:givenName V.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750522403.59
    160 rdf:type schema:Person
    161 sg:pub.10.1007/bf01605401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004209534
    162 https://doi.org/10.1007/bf01605401
    163 rdf:type schema:CreativeWork
    164 grid-institutes:None schema:alternateName Faculty of Nuclear Science and Physical Engineering, Czech Technical University, Břehová 7, 115 19, Praha 1, Czechoslovakia
    165 schema:name Faculty of Nuclear Science and Physical Engineering, Czech Technical University, Břehová 7, 115 19, Praha 1, Czechoslovakia
    166 rdf:type schema:Organization
    167 grid-institutes:grid.6441.7 schema:alternateName Acad, Sci. of Lithuania, Institute of Physics, Poželos 54, 232600, Vilnius
    168 schema:name Acad, Sci. of Lithuania, Institute of Physics, Poželos 54, 232600, Vilnius
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...