Velocity measurement of dc plasma jets based on arc root fluctuations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-03

AUTHORS

J. F. Coudert, M. P. Planch, P. Fauchais

ABSTRACT

The axial component of the radial velocity distribution of a plasma flow generated by a dc plasma spray torch was measured by using a nonintrusive optical method, based on the propagation of the plasma jet luminosity fluctuations. In contrast to the simplicity of the experimental set-up, a special effort was made in the data processing, namely by using numerical techniques defined in the context of signal theory. Both centerline and radial profiles of the axial velocity were obtained for pure Ar and Ar−H2 plasma flows. These experimental results were satisfactorily validated by calculating enthalpy and mass balances. More... »

PAGES

47-70

References to SciGraph publications

  • 1988-03. Probe measurements in thermal plasma jets in PLASMA CHEMISTRY AND PLASMA PROCESSING
  • 1991-12. Entrainment of cold gas into thermal plasma jets in PLASMA CHEMISTRY AND PLASMA PROCESSING
  • 1982-09. Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings in PLASMA CHEMISTRY AND PLASMA PROCESSING
  • 1988-06. Laser Doppler anemometry under plasma conditions. Part I. Measurements in a d.c. plasma jet in PLASMA CHEMISTRY AND PLASMA PROCESSING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01596681

    DOI

    http://dx.doi.org/10.1007/bf01596681

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040780630


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "L.M.C.T.S., Equipe \u201cPlasma, Laser, Mat\u00e9riaux,\u201d URA 320 CNRS, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coudert", 
            "givenName": "J. F.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "L.M.C.T.S., Equipe \u201cPlasma, Laser, Mat\u00e9riaux,\u201d URA 320 CNRS, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Planch", 
            "givenName": "M. P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "L.M.C.T.S., Equipe \u201cPlasma, Laser, Mat\u00e9riaux,\u201d URA 320 CNRS, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fauchais", 
            "givenName": "P.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-4073(89)90067-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006491751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4073(89)90067-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006491751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01447164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009646620", 
              "https://doi.org/10.1007/bf01447164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01447164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009646620", 
              "https://doi.org/10.1007/bf01447164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4073(92)90010-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014812273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4073(92)90010-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014812273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1299/jsme1958.18.707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018675509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01016932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033304337", 
              "https://doi.org/10.1007/bf01016932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00566524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040861208", 
              "https://doi.org/10.1007/bf00566524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00566524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040861208", 
              "https://doi.org/10.1007/bf00566524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.4051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045178113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01016152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045472408", 
              "https://doi.org/10.1007/bf01016152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1143250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057671101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1693930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057765710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1702563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057772788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3735/10/4/019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058970413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.47.1996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.47.1996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715079"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-03", 
        "datePublishedReg": "1995-03-01", 
        "description": "The axial component of the radial velocity distribution of a plasma flow generated by a dc plasma spray torch was measured by using a nonintrusive optical method, based on the propagation of the plasma jet luminosity fluctuations. In contrast to the simplicity of the experimental set-up, a special effort was made in the data processing, namely by using numerical techniques defined in the context of signal theory. Both centerline and radial profiles of the axial velocity were obtained for pure Ar and Ar\u2212H2 plasma flows. These experimental results were satisfactorily validated by calculating enthalpy and mass balances.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01596681", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124016", 
            "issn": [
              "0272-4324", 
              "1572-8986"
            ], 
            "name": "Plasma Chemistry and Plasma Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Velocity measurement of dc plasma jets based on arc root fluctuations", 
        "pagination": "47-70", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c24327179f2a6750ceb2104d4bedbc17269857ea1a6ae2dec83120d78d6293f5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01596681"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040780630"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01596681", 
          "https://app.dimensions.ai/details/publication/pub.1040780630"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01596681"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01596681'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01596681'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01596681'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01596681'


     

    This table displays all metadata directly associated to this object as RDF triples.

    118 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01596681 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N58b3f6e5ec7f4481b676b0739aad2bed
    4 schema:citation sg:pub.10.1007/bf00566524
    5 sg:pub.10.1007/bf01016152
    6 sg:pub.10.1007/bf01016932
    7 sg:pub.10.1007/bf01447164
    8 https://doi.org/10.1016/0022-4073(89)90067-8
    9 https://doi.org/10.1016/0022-4073(92)90010-2
    10 https://doi.org/10.1063/1.1143250
    11 https://doi.org/10.1063/1.1693930
    12 https://doi.org/10.1063/1.1702563
    13 https://doi.org/10.1088/0022-3735/10/4/019
    14 https://doi.org/10.1103/physreve.47.1996
    15 https://doi.org/10.1299/jsme1958.18.707
    16 https://doi.org/10.2514/3.4051
    17 schema:datePublished 1995-03
    18 schema:datePublishedReg 1995-03-01
    19 schema:description The axial component of the radial velocity distribution of a plasma flow generated by a dc plasma spray torch was measured by using a nonintrusive optical method, based on the propagation of the plasma jet luminosity fluctuations. In contrast to the simplicity of the experimental set-up, a special effort was made in the data processing, namely by using numerical techniques defined in the context of signal theory. Both centerline and radial profiles of the axial velocity were obtained for pure Ar and Ar−H2 plasma flows. These experimental results were satisfactorily validated by calculating enthalpy and mass balances.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N305c685d96a345649ebabe5aceecd1f4
    24 N7c57dc05cec74cb8851afdb3162042b9
    25 sg:journal.1124016
    26 schema:name Velocity measurement of dc plasma jets based on arc root fluctuations
    27 schema:pagination 47-70
    28 schema:productId N225f1341cf384a5e8aa8c634dab627f4
    29 N67ddc941eb684d1698c971c424a35afc
    30 N7d711c21fc9d41eaa77f7b4bc0f0c8d2
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040780630
    32 https://doi.org/10.1007/bf01596681
    33 schema:sdDatePublished 2019-04-11T13:29
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nc91325f311c64e6ba7a17127267b2ee9
    36 schema:url http://link.springer.com/10.1007/BF01596681
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N010f0d7e14e7447c8e9b97c9bcdb9d4a schema:affiliation Nfc2b625559d24214b166213aeb858bc0
    41 schema:familyName Fauchais
    42 schema:givenName P.
    43 rdf:type schema:Person
    44 N225f1341cf384a5e8aa8c634dab627f4 schema:name doi
    45 schema:value 10.1007/bf01596681
    46 rdf:type schema:PropertyValue
    47 N305c685d96a345649ebabe5aceecd1f4 schema:issueNumber 1
    48 rdf:type schema:PublicationIssue
    49 N58b3f6e5ec7f4481b676b0739aad2bed rdf:first N6635c98d212a4f79a190f186b5254eda
    50 rdf:rest N5e37770585c0486285a3f8361a2f8602
    51 N5e37770585c0486285a3f8361a2f8602 rdf:first Nd5c9a8edb6ea4d558c885010ce7f2620
    52 rdf:rest N8c4ff5d73b5544db9a1426e834fa0442
    53 N6635c98d212a4f79a190f186b5254eda schema:affiliation Nd546347e91a942ebbca66eccc4b9e7c4
    54 schema:familyName Coudert
    55 schema:givenName J. F.
    56 rdf:type schema:Person
    57 N67ddc941eb684d1698c971c424a35afc schema:name dimensions_id
    58 schema:value pub.1040780630
    59 rdf:type schema:PropertyValue
    60 N7c57dc05cec74cb8851afdb3162042b9 schema:volumeNumber 15
    61 rdf:type schema:PublicationVolume
    62 N7d711c21fc9d41eaa77f7b4bc0f0c8d2 schema:name readcube_id
    63 schema:value c24327179f2a6750ceb2104d4bedbc17269857ea1a6ae2dec83120d78d6293f5
    64 rdf:type schema:PropertyValue
    65 N8c4ff5d73b5544db9a1426e834fa0442 rdf:first N010f0d7e14e7447c8e9b97c9bcdb9d4a
    66 rdf:rest rdf:nil
    67 Nc91325f311c64e6ba7a17127267b2ee9 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nd546347e91a942ebbca66eccc4b9e7c4 schema:name L.M.C.T.S., Equipe “Plasma, Laser, Matériaux,” URA 320 CNRS, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
    70 rdf:type schema:Organization
    71 Nd5c9a8edb6ea4d558c885010ce7f2620 schema:affiliation Neba16d72bb2544ac8182c528ea87dea4
    72 schema:familyName Planch
    73 schema:givenName M. P.
    74 rdf:type schema:Person
    75 Neba16d72bb2544ac8182c528ea87dea4 schema:name L.M.C.T.S., Equipe “Plasma, Laser, Matériaux,” URA 320 CNRS, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
    76 rdf:type schema:Organization
    77 Nfc2b625559d24214b166213aeb858bc0 schema:name L.M.C.T.S., Equipe “Plasma, Laser, Matériaux,” URA 320 CNRS, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
    78 rdf:type schema:Organization
    79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Engineering
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Interdisciplinary Engineering
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1124016 schema:issn 0272-4324
    86 1572-8986
    87 schema:name Plasma Chemistry and Plasma Processing
    88 rdf:type schema:Periodical
    89 sg:pub.10.1007/bf00566524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040861208
    90 https://doi.org/10.1007/bf00566524
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01016152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045472408
    93 https://doi.org/10.1007/bf01016152
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01016932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033304337
    96 https://doi.org/10.1007/bf01016932
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01447164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009646620
    99 https://doi.org/10.1007/bf01447164
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0022-4073(89)90067-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006491751
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0022-4073(92)90010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014812273
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1063/1.1143250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057671101
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1063/1.1693930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057765710
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1063/1.1702563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057772788
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1088/0022-3735/10/4/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058970413
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1103/physreve.47.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715079
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1299/jsme1958.18.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018675509
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.2514/3.4051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045178113
    118 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...