# On Broucke's velocity-related series expansions in the two-body problem

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

1975-12

AUTHORS ABSTRACT

This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )}$$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}}$$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted. More... »

PAGES

513-518

### References to SciGraph publications

• 1974-12. A note on velocity-related series expansions in the two-body problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01595394

DOI

http://dx.doi.org/10.1007/bf01595394

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001743077

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England",
"id": "http://www.grid.ac/institutes/grid.10025.36",
"name": [
"Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England"
],
"type": "Organization"
},
"familyName": "Jupp",
"givenName": "Alan H.",
"id": "sg:person.07420122720.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01229122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026074088",
"https://doi.org/10.1007/bf01229122"
],
"type": "CreativeWork"
}
],
"datePublished": "1975-12",
"datePublishedReg": "1975-12-01",
"description": "This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {F(\\upsilon )}$$\n\\end{document} and\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {{1 \\mathord{\\left/ {\\vphantom {1 {F(\\upsilon )}}} \\right. \\kern-\\nulldelimiterspace} {F(\\upsilon )}}}$$\n\\end{document} are given, where\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$F(\\upsilon ) = (1 - e^2 )/(1 + 2e\\cos \\upsilon + e^2 ), e< 1$$\n\\end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.",
"genre": "article",
"id": "sg:pub.10.1007/bf01595394",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"anomalies",
"expansion",
"article",
"problem",
"relation",
"short article",
"eccentricity",
"recent paper",
"derivation",
"paper",
"Fourier",
"interesting relations",
"two-body problem",
"true anomaly",
"Legendre polynomials",
"polynomials",
"series expansion",
"Broucke",
"Legendre expansion"
],
"name": "On Broucke's velocity-related series expansions in the two-body problem",
"pagination": "513-518",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001743077"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01595394"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01595394",
"https://app.dimensions.ai/details/publication/pub.1001743077"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:16",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_126.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01595394"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      22 PREDICATES      45 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0102
3 schema:author Nb934dac01eea4b388b402c17d91c0afd
4 schema:citation sg:pub.10.1007/bf01229122
5 schema:datePublished 1975-12
6 schema:datePublishedReg 1975-12-01
7 schema:description This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )}$$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}}$$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2c55662be0104138930ff75f7128180d
12 N963c1ee9a4a94ee4ac8c2f54f7eecf3f
13 sg:journal.1136436
14 schema:keywords Broucke
15 Fourier
16 Legendre expansion
17 Legendre polynomials
18 anomalies
19 article
20 derivation
21 eccentricity
22 expansion
23 interesting relations
24 paper
25 polynomials
26 problem
27 recent paper
28 relation
29 series expansion
30 short article
31 true anomaly
32 two-body problem
33 schema:name On Broucke's velocity-related series expansions in the two-body problem
34 schema:pagination 513-518
35 schema:productId N10b8613d6c8146eba5a9e21c320831a1
36 N122c9b11db754afb8f9c805999cb0c1c
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001743077
38 https://doi.org/10.1007/bf01595394
39 schema:sdDatePublished 2022-05-20T07:16
41 schema:sdPublisher N9593426ed76440c0be729d65ff2ba3d1
42 schema:url https://doi.org/10.1007/bf01595394
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N10b8613d6c8146eba5a9e21c320831a1 schema:name dimensions_id
47 schema:value pub.1001743077
48 rdf:type schema:PropertyValue
49 N122c9b11db754afb8f9c805999cb0c1c schema:name doi
50 schema:value 10.1007/bf01595394
51 rdf:type schema:PropertyValue
53 rdf:type schema:PublicationVolume
54 N9593426ed76440c0be729d65ff2ba3d1 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N963c1ee9a4a94ee4ac8c2f54f7eecf3f schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 Nb934dac01eea4b388b402c17d91c0afd rdf:first sg:person.07420122720.37
59 rdf:rest rdf:nil
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136436 schema:issn 0923-2958
67 1572-9478
68 schema:name Celestial Mechanics and Dynamical Astronomy
69 schema:publisher Springer Nature
70 rdf:type schema:Periodical
71 sg:person.07420122720.37 schema:affiliation grid-institutes:grid.10025.36
72 schema:familyName Jupp
73 schema:givenName Alan H.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01229122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026074088
77 https://doi.org/10.1007/bf01229122
78 rdf:type schema:CreativeWork
79 grid-institutes:grid.10025.36 schema:alternateName Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England
80 schema:name Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England
81 rdf:type schema:Organization