Ontology type: schema:ScholarlyArticle
1975-12
AUTHORS ABSTRACTThis short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}} $$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted. More... »
PAGES513-518
http://scigraph.springernature.com/pub.10.1007/bf01595394
DOIhttp://dx.doi.org/10.1007/bf01595394
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1001743077
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England",
"id": "http://www.grid.ac/institutes/grid.10025.36",
"name": [
"Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England"
],
"type": "Organization"
},
"familyName": "Jupp",
"givenName": "Alan H.",
"id": "sg:person.07420122720.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01229122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026074088",
"https://doi.org/10.1007/bf01229122"
],
"type": "CreativeWork"
}
],
"datePublished": "1975-12",
"datePublishedReg": "1975-12-01",
"description": "This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {F(\\upsilon )} $$\n\\end{document} and\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {{1 \\mathord{\\left/ {\\vphantom {1 {F(\\upsilon )}}} \\right. \\kern-\\nulldelimiterspace} {F(\\upsilon )}}} $$\n\\end{document} are given, where\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$F(\\upsilon ) = (1 - e^2 )/(1 + 2e\\cos \\upsilon + e^2 ), e< 1$$\n\\end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.",
"genre": "article",
"id": "sg:pub.10.1007/bf01595394",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"anomalies",
"expansion",
"article",
"problem",
"relation",
"short article",
"eccentricity",
"recent paper",
"derivation",
"paper",
"Fourier",
"interesting relations",
"two-body problem",
"true anomaly",
"Legendre polynomials",
"polynomials",
"series expansion",
"Broucke",
"Legendre expansion"
],
"name": "On Broucke's velocity-related series expansions in the two-body problem",
"pagination": "513-518",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001743077"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01595394"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01595394",
"https://app.dimensions.ai/details/publication/pub.1001743077"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_126.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01595394"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'
This table displays all metadata directly associated to this object as RDF triples.
81 TRIPLES
22 PREDICATES
45 URIs
36 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01595394 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | Nb934dac01eea4b388b402c17d91c0afd |
4 | ″ | schema:citation | sg:pub.10.1007/bf01229122 |
5 | ″ | schema:datePublished | 1975-12 |
6 | ″ | schema:datePublishedReg | 1975-12-01 |
7 | ″ | schema:description | This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}} $$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2c55662be0104138930ff75f7128180d |
12 | ″ | ″ | N963c1ee9a4a94ee4ac8c2f54f7eecf3f |
13 | ″ | ″ | sg:journal.1136436 |
14 | ″ | schema:keywords | Broucke |
15 | ″ | ″ | Fourier |
16 | ″ | ″ | Legendre expansion |
17 | ″ | ″ | Legendre polynomials |
18 | ″ | ″ | anomalies |
19 | ″ | ″ | article |
20 | ″ | ″ | derivation |
21 | ″ | ″ | eccentricity |
22 | ″ | ″ | expansion |
23 | ″ | ″ | interesting relations |
24 | ″ | ″ | paper |
25 | ″ | ″ | polynomials |
26 | ″ | ″ | problem |
27 | ″ | ″ | recent paper |
28 | ″ | ″ | relation |
29 | ″ | ″ | series expansion |
30 | ″ | ″ | short article |
31 | ″ | ″ | true anomaly |
32 | ″ | ″ | two-body problem |
33 | ″ | schema:name | On Broucke's velocity-related series expansions in the two-body problem |
34 | ″ | schema:pagination | 513-518 |
35 | ″ | schema:productId | N10b8613d6c8146eba5a9e21c320831a1 |
36 | ″ | ″ | N122c9b11db754afb8f9c805999cb0c1c |
37 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001743077 |
38 | ″ | ″ | https://doi.org/10.1007/bf01595394 |
39 | ″ | schema:sdDatePublished | 2022-05-20T07:16 |
40 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
41 | ″ | schema:sdPublisher | N9593426ed76440c0be729d65ff2ba3d1 |
42 | ″ | schema:url | https://doi.org/10.1007/bf01595394 |
43 | ″ | sgo:license | sg:explorer/license/ |
44 | ″ | sgo:sdDataset | articles |
45 | ″ | rdf:type | schema:ScholarlyArticle |
46 | N10b8613d6c8146eba5a9e21c320831a1 | schema:name | dimensions_id |
47 | ″ | schema:value | pub.1001743077 |
48 | ″ | rdf:type | schema:PropertyValue |
49 | N122c9b11db754afb8f9c805999cb0c1c | schema:name | doi |
50 | ″ | schema:value | 10.1007/bf01595394 |
51 | ″ | rdf:type | schema:PropertyValue |
52 | N2c55662be0104138930ff75f7128180d | schema:volumeNumber | 12 |
53 | ″ | rdf:type | schema:PublicationVolume |
54 | N9593426ed76440c0be729d65ff2ba3d1 | schema:name | Springer Nature - SN SciGraph project |
55 | ″ | rdf:type | schema:Organization |
56 | N963c1ee9a4a94ee4ac8c2f54f7eecf3f | schema:issueNumber | 4 |
57 | ″ | rdf:type | schema:PublicationIssue |
58 | Nb934dac01eea4b388b402c17d91c0afd | rdf:first | sg:person.07420122720.37 |
59 | ″ | rdf:rest | rdf:nil |
60 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
61 | ″ | schema:name | Mathematical Sciences |
62 | ″ | rdf:type | schema:DefinedTerm |
63 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
64 | ″ | schema:name | Applied Mathematics |
65 | ″ | rdf:type | schema:DefinedTerm |
66 | sg:journal.1136436 | schema:issn | 0923-2958 |
67 | ″ | ″ | 1572-9478 |
68 | ″ | schema:name | Celestial Mechanics and Dynamical Astronomy |
69 | ″ | schema:publisher | Springer Nature |
70 | ″ | rdf:type | schema:Periodical |
71 | sg:person.07420122720.37 | schema:affiliation | grid-institutes:grid.10025.36 |
72 | ″ | schema:familyName | Jupp |
73 | ″ | schema:givenName | Alan H. |
74 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37 |
75 | ″ | rdf:type | schema:Person |
76 | sg:pub.10.1007/bf01229122 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026074088 |
77 | ″ | ″ | https://doi.org/10.1007/bf01229122 |
78 | ″ | rdf:type | schema:CreativeWork |
79 | grid-institutes:grid.10025.36 | schema:alternateName | Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England |
80 | ″ | schema:name | Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England |
81 | ″ | rdf:type | schema:Organization |