On Broucke's velocity-related series expansions in the two-body problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-12

AUTHORS

Alan H. Jupp

ABSTRACT

This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}} $$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted. More... »

PAGES

513-518

References to SciGraph publications

  • 1974-12. A note on velocity-related series expansions in the two-body problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01595394

    DOI

    http://dx.doi.org/10.1007/bf01595394

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001743077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jupp", 
            "givenName": "Alan H.", 
            "id": "sg:person.07420122720.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01229122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026074088", 
              "https://doi.org/10.1007/bf01229122"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-12", 
        "datePublishedReg": "1975-12-01", 
        "description": "This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {F(\\upsilon )} $$\n\\end{document} and\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {{1 \\mathord{\\left/ {\\vphantom {1 {F(\\upsilon )}}} \\right. \\kern-\\nulldelimiterspace} {F(\\upsilon )}}} $$\n\\end{document} are given, where\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$F(\\upsilon ) = (1 - e^2 )/(1 + 2e\\cos \\upsilon  + e^2 ),    e< 1$$\n\\end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01595394", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "anomalies", 
          "expansion", 
          "relation", 
          "article", 
          "problem", 
          "short article", 
          "eccentricity", 
          "recent paper", 
          "derivation", 
          "paper", 
          "interesting relations", 
          "Fourier", 
          "polynomials", 
          "two-body problem", 
          "true anomaly", 
          "Legendre polynomials", 
          "series expansion", 
          "Legendre expansion", 
          "Dr R. Broucke", 
          "R. Broucke", 
          "Broucke", 
          "velocity-related series expansions", 
          "Broucke's velocity-related series expansions"
        ], 
        "name": "On Broucke's velocity-related series expansions in the two-body problem", 
        "pagination": "513-518", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001743077"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01595394"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01595394", 
          "https://app.dimensions.ai/details/publication/pub.1001743077"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_122.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01595394"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'


     

    This table displays all metadata directly associated to this object as RDF triples.

    85 TRIPLES      22 PREDICATES      49 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01595394 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N46b2855d33234032945b71480b72228a
    4 schema:citation sg:pub.10.1007/bf01229122
    5 schema:datePublished 1975-12
    6 schema:datePublishedReg 1975-12-01
    7 schema:description This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}} $$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N44b467cfec9a4db7ae1094280ae0442a
    12 N7c4e76bfa2e041bdb42a64f1fa124679
    13 sg:journal.1136436
    14 schema:keywords Broucke
    15 Broucke's velocity-related series expansions
    16 Dr R. Broucke
    17 Fourier
    18 Legendre expansion
    19 Legendre polynomials
    20 R. Broucke
    21 anomalies
    22 article
    23 derivation
    24 eccentricity
    25 expansion
    26 interesting relations
    27 paper
    28 polynomials
    29 problem
    30 recent paper
    31 relation
    32 series expansion
    33 short article
    34 true anomaly
    35 two-body problem
    36 velocity-related series expansions
    37 schema:name On Broucke's velocity-related series expansions in the two-body problem
    38 schema:pagination 513-518
    39 schema:productId N1692c6e966d14ecfb115449d0eba2578
    40 N8b0edf61fb9944a38f70705e8ba7d104
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001743077
    42 https://doi.org/10.1007/bf01595394
    43 schema:sdDatePublished 2022-01-01T18:00
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nfb0617fb291840d583ff30b18ec3b01e
    46 schema:url https://doi.org/10.1007/bf01595394
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N1692c6e966d14ecfb115449d0eba2578 schema:name dimensions_id
    51 schema:value pub.1001743077
    52 rdf:type schema:PropertyValue
    53 N44b467cfec9a4db7ae1094280ae0442a schema:issueNumber 4
    54 rdf:type schema:PublicationIssue
    55 N46b2855d33234032945b71480b72228a rdf:first sg:person.07420122720.37
    56 rdf:rest rdf:nil
    57 N7c4e76bfa2e041bdb42a64f1fa124679 schema:volumeNumber 12
    58 rdf:type schema:PublicationVolume
    59 N8b0edf61fb9944a38f70705e8ba7d104 schema:name doi
    60 schema:value 10.1007/bf01595394
    61 rdf:type schema:PropertyValue
    62 Nfb0617fb291840d583ff30b18ec3b01e schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Applied Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136436 schema:issn 0008-8714
    71 0923-2958
    72 schema:name Celestial Mechanics and Dynamical Astronomy
    73 schema:publisher Springer Nature
    74 rdf:type schema:Periodical
    75 sg:person.07420122720.37 schema:affiliation grid-institutes:grid.10025.36
    76 schema:familyName Jupp
    77 schema:givenName Alan H.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf01229122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026074088
    81 https://doi.org/10.1007/bf01229122
    82 rdf:type schema:CreativeWork
    83 grid-institutes:grid.10025.36 schema:alternateName Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England
    84 schema:name Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England
    85 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...