On Broucke's velocity-related series expansions in the two-body problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-12

AUTHORS

Alan H. Jupp

ABSTRACT

This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}} $$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted. More... »

PAGES

513-518

References to SciGraph publications

  • 1974-12. A note on velocity-related series expansions in the two-body problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01595394

    DOI

    http://dx.doi.org/10.1007/bf01595394

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001743077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jupp", 
            "givenName": "Alan H.", 
            "id": "sg:person.07420122720.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01229122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026074088", 
              "https://doi.org/10.1007/bf01229122"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-12", 
        "datePublishedReg": "1975-12-01", 
        "description": "This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {F(\\upsilon )} $$\n\\end{document} and\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\sqrt {{1 \\mathord{\\left/ {\\vphantom {1 {F(\\upsilon )}}} \\right. \\kern-\\nulldelimiterspace} {F(\\upsilon )}}} $$\n\\end{document} are given, where\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$F(\\upsilon ) = (1 - e^2 )/(1 + 2e\\cos \\upsilon  + e^2 ),    e< 1$$\n\\end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01595394", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0923-2958", 
              "1572-9478"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "anomalies", 
          "expansion", 
          "article", 
          "problem", 
          "relation", 
          "short article", 
          "eccentricity", 
          "recent paper", 
          "derivation", 
          "paper", 
          "Fourier", 
          "interesting relations", 
          "two-body problem", 
          "true anomaly", 
          "Legendre polynomials", 
          "polynomials", 
          "series expansion", 
          "Broucke", 
          "Legendre expansion"
        ], 
        "name": "On Broucke's velocity-related series expansions in the two-body problem", 
        "pagination": "513-518", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001743077"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01595394"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01595394", 
          "https://app.dimensions.ai/details/publication/pub.1001743077"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_126.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01595394"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01595394'


     

    This table displays all metadata directly associated to this object as RDF triples.

    81 TRIPLES      22 PREDICATES      45 URIs      36 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01595394 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nb934dac01eea4b388b402c17d91c0afd
    4 schema:citation sg:pub.10.1007/bf01229122
    5 schema:datePublished 1975-12
    6 schema:datePublishedReg 1975-12-01
    7 schema:description This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {F(\upsilon )} $$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-\nulldelimiterspace} {F(\upsilon )}}} $$ \end{document} are given, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ \end{document} In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2.Some interesting relations involving Legendre polynomials are also noted.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N2c55662be0104138930ff75f7128180d
    12 N963c1ee9a4a94ee4ac8c2f54f7eecf3f
    13 sg:journal.1136436
    14 schema:keywords Broucke
    15 Fourier
    16 Legendre expansion
    17 Legendre polynomials
    18 anomalies
    19 article
    20 derivation
    21 eccentricity
    22 expansion
    23 interesting relations
    24 paper
    25 polynomials
    26 problem
    27 recent paper
    28 relation
    29 series expansion
    30 short article
    31 true anomaly
    32 two-body problem
    33 schema:name On Broucke's velocity-related series expansions in the two-body problem
    34 schema:pagination 513-518
    35 schema:productId N10b8613d6c8146eba5a9e21c320831a1
    36 N122c9b11db754afb8f9c805999cb0c1c
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001743077
    38 https://doi.org/10.1007/bf01595394
    39 schema:sdDatePublished 2022-05-20T07:16
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N9593426ed76440c0be729d65ff2ba3d1
    42 schema:url https://doi.org/10.1007/bf01595394
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N10b8613d6c8146eba5a9e21c320831a1 schema:name dimensions_id
    47 schema:value pub.1001743077
    48 rdf:type schema:PropertyValue
    49 N122c9b11db754afb8f9c805999cb0c1c schema:name doi
    50 schema:value 10.1007/bf01595394
    51 rdf:type schema:PropertyValue
    52 N2c55662be0104138930ff75f7128180d schema:volumeNumber 12
    53 rdf:type schema:PublicationVolume
    54 N9593426ed76440c0be729d65ff2ba3d1 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N963c1ee9a4a94ee4ac8c2f54f7eecf3f schema:issueNumber 4
    57 rdf:type schema:PublicationIssue
    58 Nb934dac01eea4b388b402c17d91c0afd rdf:first sg:person.07420122720.37
    59 rdf:rest rdf:nil
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Applied Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1136436 schema:issn 0923-2958
    67 1572-9478
    68 schema:name Celestial Mechanics and Dynamical Astronomy
    69 schema:publisher Springer Nature
    70 rdf:type schema:Periodical
    71 sg:person.07420122720.37 schema:affiliation grid-institutes:grid.10025.36
    72 schema:familyName Jupp
    73 schema:givenName Alan H.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf01229122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026074088
    77 https://doi.org/10.1007/bf01229122
    78 rdf:type schema:CreativeWork
    79 grid-institutes:grid.10025.36 schema:alternateName Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England
    80 schema:name Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, England
    81 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...