On the mixed boundary-value problem for harmonic functions in plane domains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-05

AUTHORS

Dorel Homentcovschi

ABSTRACT

This paper considers the problem of the determination of a harmonic function in a simply connected plane domain when the values of the function are known on some arcs of the boundary and the values of the normal derivative are known on the remaining boundary. We first present the solution in theoretical form and then show how to compute the solution with the aid of rapidly convergent series. The coefficients of these series are Fourier coefficients of certain functions and can be estimated by using the Fast Fourier Transform. The examples considered in the last part of the paper emphasize the advantages of the method presented in this paper for solving the mixed boundary-value problem as compared to other methods used for this purpose. More... »

PAGES

352-366

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01590662

DOI

http://dx.doi.org/10.1007/bf01590662

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027853255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Central Institute of Mathematics, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Homentcovschi", 
        "givenName": "Dorel", 
        "id": "sg:person.0725407310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725407310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-1972-0301176-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002621433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19610410710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006792195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01595198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014895592", 
          "https://doi.org/10.1007/bf01595198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01595198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014895592", 
          "https://doi.org/10.1007/bf01595198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19750551204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028490274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19780580111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047589243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/15.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-ed.1970.17095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061459176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-ed.1978.19171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061461015"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-05", 
    "datePublishedReg": "1980-05-01", 
    "description": "This paper considers the problem of the determination of a harmonic function in a simply connected plane domain when the values of the function are known on some arcs of the boundary and the values of the normal derivative are known on the remaining boundary. We first present the solution in theoretical form and then show how to compute the solution with the aid of rapidly convergent series. The coefficients of these series are Fourier coefficients of certain functions and can be estimated by using the Fast Fourier Transform. The examples considered in the last part of the paper emphasize the advantages of the method presented in this paper for solving the mixed boundary-value problem as compared to other methods used for this purpose.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01590662", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053636", 
        "issn": [
          "0044-2275", 
          "1420-9039"
        ], 
        "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "On the mixed boundary-value problem for harmonic functions in plane domains", 
    "pagination": "352-366", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84aee9302a6ca60beffa435900af04fd3023edb0fd7ced3718458f44bb76d797"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01590662"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027853255"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01590662", 
      "https://app.dimensions.ai/details/publication/pub.1027853255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01590662"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01590662'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01590662'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01590662'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01590662'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01590662 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N6cc0b759474148458c3d1d29e1a7e4d3
4 schema:citation sg:pub.10.1007/bf01595198
5 https://doi.org/10.1002/zamm.19610410710
6 https://doi.org/10.1002/zamm.19750551204
7 https://doi.org/10.1002/zamm.19780580111
8 https://doi.org/10.1090/s0025-5718-1972-0301176-8
9 https://doi.org/10.1093/imamat/15.1.1
10 https://doi.org/10.1109/t-ed.1970.17095
11 https://doi.org/10.1109/t-ed.1978.19171
12 schema:datePublished 1980-05
13 schema:datePublishedReg 1980-05-01
14 schema:description This paper considers the problem of the determination of a harmonic function in a simply connected plane domain when the values of the function are known on some arcs of the boundary and the values of the normal derivative are known on the remaining boundary. We first present the solution in theoretical form and then show how to compute the solution with the aid of rapidly convergent series. The coefficients of these series are Fourier coefficients of certain functions and can be estimated by using the Fast Fourier Transform. The examples considered in the last part of the paper emphasize the advantages of the method presented in this paper for solving the mixed boundary-value problem as compared to other methods used for this purpose.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N88a6223555f54c729d59f054de1d0300
19 N969a3e60f7bf40ca804c28e010420680
20 sg:journal.1053636
21 schema:name On the mixed boundary-value problem for harmonic functions in plane domains
22 schema:pagination 352-366
23 schema:productId N1b9bf3b8df7849a18639a2ee889c7aa8
24 N6f52df7fb82e4b6e8cae45a6520da225
25 Nbfcdd5c1d5214d84939742a0282858df
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027853255
27 https://doi.org/10.1007/bf01590662
28 schema:sdDatePublished 2019-04-11T01:11
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N18ee696a28ad4664bf36313f4c333223
31 schema:url http://link.springer.com/10.1007%2FBF01590662
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N18ee696a28ad4664bf36313f4c333223 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N1b9bf3b8df7849a18639a2ee889c7aa8 schema:name dimensions_id
38 schema:value pub.1027853255
39 rdf:type schema:PropertyValue
40 N6cc0b759474148458c3d1d29e1a7e4d3 rdf:first sg:person.0725407310.79
41 rdf:rest rdf:nil
42 N6f52df7fb82e4b6e8cae45a6520da225 schema:name doi
43 schema:value 10.1007/bf01590662
44 rdf:type schema:PropertyValue
45 N741ba50e159547a89910d4ac32d39875 schema:name Central Institute of Mathematics, Bucharest, Romania
46 rdf:type schema:Organization
47 N88a6223555f54c729d59f054de1d0300 schema:volumeNumber 31
48 rdf:type schema:PublicationVolume
49 N969a3e60f7bf40ca804c28e010420680 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 Nbfcdd5c1d5214d84939742a0282858df schema:name readcube_id
52 schema:value 84aee9302a6ca60beffa435900af04fd3023edb0fd7ced3718458f44bb76d797
53 rdf:type schema:PropertyValue
54 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
55 schema:name Chemical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
58 schema:name Physical Chemistry (incl. Structural)
59 rdf:type schema:DefinedTerm
60 sg:journal.1053636 schema:issn 0044-2275
61 1420-9039
62 schema:name Zeitschrift für angewandte Mathematik und Physik
63 rdf:type schema:Periodical
64 sg:person.0725407310.79 schema:affiliation N741ba50e159547a89910d4ac32d39875
65 schema:familyName Homentcovschi
66 schema:givenName Dorel
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725407310.79
68 rdf:type schema:Person
69 sg:pub.10.1007/bf01595198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014895592
70 https://doi.org/10.1007/bf01595198
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1002/zamm.19610410710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006792195
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1002/zamm.19750551204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028490274
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1002/zamm.19780580111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047589243
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1090/s0025-5718-1972-0301176-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002621433
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1093/imamat/15.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684434
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1109/t-ed.1970.17095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061459176
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1109/t-ed.1978.19171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061461015
85 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...