An algorithm for maximizing entropy subject to simple bounds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-04

AUTHORS

M. J. D. Powell

ABSTRACT

An unusual form of the maximum entropy problem is considered, that includes simple bound constraints on the Fourier coefficients of the required image, as well as nonnegativity conditions on the image intensities. The algorithm avoids mixing these constraints by introducing a parameter into the objective function that is adjusted by an outer iteration. For each parameter value an inner iteration solves a large optimization calculation, whose constraints are just the simple bounds, by a combination of the conjugate gradient procedure and an active set method. An important feature is the ability to make many changes to the active set at once. The outer iteration includes a test for inconsistency of all the given constraints. The algorithm is described, a proof of convergence is given, and there are some second-hand remarks on numerical results. More... »

PAGES

171-180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01589401

DOI

http://dx.doi.org/10.1007/bf01589401

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015405185


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M. J. D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1049/ip-f-1.1984.0099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056850705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1982.12425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061445060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-04", 
    "datePublishedReg": "1988-04-01", 
    "description": "An unusual form of the maximum entropy problem is considered, that includes simple bound constraints on the Fourier coefficients of the required image, as well as nonnegativity conditions on the image intensities. The algorithm avoids mixing these constraints by introducing a parameter into the objective function that is adjusted by an outer iteration. For each parameter value an inner iteration solves a large optimization calculation, whose constraints are just the simple bounds, by a combination of the conjugate gradient procedure and an active set method. An important feature is the ability to make many changes to the active set at once. The outer iteration includes a test for inconsistency of all the given constraints. The algorithm is described, a proof of convergence is given, and there are some second-hand remarks on numerical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01589401", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "An algorithm for maximizing entropy subject to simple bounds", 
    "pagination": "171-180", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49668934e0465d92fc8ae132da40ec60a46a6248b42f7fd0780eecbf29985d8e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01589401"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015405185"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01589401", 
      "https://app.dimensions.ai/details/publication/pub.1015405185"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01589401"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01589401'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01589401'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01589401'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01589401'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01589401 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nd2dc0c7cb5cd4ef292a6410491aeac12
4 schema:citation https://doi.org/10.1049/ip-f-1.1984.0099
5 https://doi.org/10.1109/proc.1982.12425
6 schema:datePublished 1988-04
7 schema:datePublishedReg 1988-04-01
8 schema:description An unusual form of the maximum entropy problem is considered, that includes simple bound constraints on the Fourier coefficients of the required image, as well as nonnegativity conditions on the image intensities. The algorithm avoids mixing these constraints by introducing a parameter into the objective function that is adjusted by an outer iteration. For each parameter value an inner iteration solves a large optimization calculation, whose constraints are just the simple bounds, by a combination of the conjugate gradient procedure and an active set method. An important feature is the ability to make many changes to the active set at once. The outer iteration includes a test for inconsistency of all the given constraints. The algorithm is described, a proof of convergence is given, and there are some second-hand remarks on numerical results.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N1327b26ff85a40cb8a2142fcd958da80
13 N9f813c89d2d1455b969c274385262cd3
14 sg:journal.1047630
15 schema:name An algorithm for maximizing entropy subject to simple bounds
16 schema:pagination 171-180
17 schema:productId N46f17682a57849d29cc3f67469d3b843
18 N4cb8ff5304e9473e9197aa8cc25f2e16
19 N528dfe35a4cc4dac8795bddfc8add161
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015405185
21 https://doi.org/10.1007/bf01589401
22 schema:sdDatePublished 2019-04-10T16:46
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Ne225517ab9c144b385f7ee9d8531b928
25 schema:url http://link.springer.com/10.1007%2FBF01589401
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1327b26ff85a40cb8a2142fcd958da80 schema:volumeNumber 42
30 rdf:type schema:PublicationVolume
31 N46f17682a57849d29cc3f67469d3b843 schema:name doi
32 schema:value 10.1007/bf01589401
33 rdf:type schema:PropertyValue
34 N4cb8ff5304e9473e9197aa8cc25f2e16 schema:name readcube_id
35 schema:value 49668934e0465d92fc8ae132da40ec60a46a6248b42f7fd0780eecbf29985d8e
36 rdf:type schema:PropertyValue
37 N528dfe35a4cc4dac8795bddfc8add161 schema:name dimensions_id
38 schema:value pub.1015405185
39 rdf:type schema:PropertyValue
40 N9f813c89d2d1455b969c274385262cd3 schema:issueNumber 1-3
41 rdf:type schema:PublicationIssue
42 Nd2dc0c7cb5cd4ef292a6410491aeac12 rdf:first sg:person.07731545105.07
43 rdf:rest rdf:nil
44 Ne225517ab9c144b385f7ee9d8531b928 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
50 schema:name Numerical and Computational Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1047630 schema:issn 0025-5610
53 1436-4646
54 schema:name Mathematical Programming
55 rdf:type schema:Periodical
56 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
57 schema:familyName Powell
58 schema:givenName M. J. D.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
60 rdf:type schema:Person
61 https://doi.org/10.1049/ip-f-1.1984.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056850705
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1109/proc.1982.12425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445060
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
66 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW, Cambridge, England
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...