A note on quasi-newton formulae for sparse second derivative matrices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-12

AUTHORS

M. J. D. Powell

ABSTRACT

In order to apply quasi-Newton methods to solve unconstrained minimization calculations when the number of variables is very large, it is usually necessary to make use of any sparsity in the second derivative matrix of the objective function. Therefore, it is important to extend to the sparse case the updating formulae that occur in variable metric algorithms to revise the estimate of the second derivative matrix. Suitable extensions suggest themselves when the updating formulae are derived by variational methods [1, 3]. The purpose of the present paper is to give a new proof of a theorem of Dennis and Schnabel [1], that shows the effect of sparsity on updating formulae for second derivative estimates. More... »

PAGES

144-151

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01589341

DOI

http://dx.doi.org/10.1007/bf01589341

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012568499


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M. J. D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-1970-0258248-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015532341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0455338-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031059106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1021091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062861413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2004872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069692548"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-12", 
    "datePublishedReg": "1981-12-01", 
    "description": "In order to apply quasi-Newton methods to solve unconstrained minimization calculations when the number of variables is very large, it is usually necessary to make use of any sparsity in the second derivative matrix of the objective function. Therefore, it is important to extend to the sparse case the updating formulae that occur in variable metric algorithms to revise the estimate of the second derivative matrix. Suitable extensions suggest themselves when the updating formulae are derived by variational methods [1, 3]. The purpose of the present paper is to give a new proof of a theorem of Dennis and Schnabel [1], that shows the effect of sparsity on updating formulae for second derivative estimates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01589341", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "A note on quasi-newton formulae for sparse second derivative matrices", 
    "pagination": "144-151", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3be1020b28931a32b5a0e4bbfdb6ddf2ae452749158ae3ab2553a11bccd49da2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01589341"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012568499"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01589341", 
      "https://app.dimensions.ai/details/publication/pub.1012568499"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01589341"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01589341'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01589341'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01589341'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01589341'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01589341 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nc52db7c2da3f427087748964f3626d05
4 schema:citation https://doi.org/10.1090/s0025-5718-1970-0258248-4
5 https://doi.org/10.1090/s0025-5718-1977-0455338-4
6 https://doi.org/10.1137/1021091
7 https://doi.org/10.2307/2004872
8 schema:datePublished 1981-12
9 schema:datePublishedReg 1981-12-01
10 schema:description In order to apply quasi-Newton methods to solve unconstrained minimization calculations when the number of variables is very large, it is usually necessary to make use of any sparsity in the second derivative matrix of the objective function. Therefore, it is important to extend to the sparse case the updating formulae that occur in variable metric algorithms to revise the estimate of the second derivative matrix. Suitable extensions suggest themselves when the updating formulae are derived by variational methods [1, 3]. The purpose of the present paper is to give a new proof of a theorem of Dennis and Schnabel [1], that shows the effect of sparsity on updating formulae for second derivative estimates.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N839c8822126641f9ad2f0b9f2a6a25c5
15 Na19251dba2904a7cbd615ee2ac515719
16 sg:journal.1047630
17 schema:name A note on quasi-newton formulae for sparse second derivative matrices
18 schema:pagination 144-151
19 schema:productId N2632fed255b14b4fb9973856f897513e
20 N57899df0d2424811b86582642ff57273
21 Nc3904df680e047c2aa57583754e60f8d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012568499
23 https://doi.org/10.1007/bf01589341
24 schema:sdDatePublished 2019-04-10T22:36
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nca6194900f4a44bf97d65fa52154e45c
27 schema:url http://link.springer.com/10.1007%2FBF01589341
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N2632fed255b14b4fb9973856f897513e schema:name dimensions_id
32 schema:value pub.1012568499
33 rdf:type schema:PropertyValue
34 N57899df0d2424811b86582642ff57273 schema:name doi
35 schema:value 10.1007/bf01589341
36 rdf:type schema:PropertyValue
37 N839c8822126641f9ad2f0b9f2a6a25c5 schema:volumeNumber 20
38 rdf:type schema:PublicationVolume
39 Na19251dba2904a7cbd615ee2ac515719 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 Nc3904df680e047c2aa57583754e60f8d schema:name readcube_id
42 schema:value 3be1020b28931a32b5a0e4bbfdb6ddf2ae452749158ae3ab2553a11bccd49da2
43 rdf:type schema:PropertyValue
44 Nc52db7c2da3f427087748964f3626d05 rdf:first sg:person.07731545105.07
45 rdf:rest rdf:nil
46 Nca6194900f4a44bf97d65fa52154e45c schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
52 schema:name Numerical and Computational Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1047630 schema:issn 0025-5610
55 1436-4646
56 schema:name Mathematical Programming
57 rdf:type schema:Periodical
58 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
59 schema:familyName Powell
60 schema:givenName M. J. D.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
62 rdf:type schema:Person
63 https://doi.org/10.1090/s0025-5718-1970-0258248-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015532341
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1090/s0025-5718-1977-0455338-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031059106
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1137/1021091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861413
68 rdf:type schema:CreativeWork
69 https://doi.org/10.2307/2004872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069692548
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
72 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW, Cambridge, England
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...