A discrete Newton algorithm for minimizing a function of many variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-12

AUTHORS

Dianne P. O'Leary

ABSTRACT

A Newton-like method is presented for minimizing a function ofn variables. It uses only function and gradient values and is a variant of the discrete Newton algorithm. This variant requires fewer operations than the standard method whenn > 39, and storage is proportional ton rather thann2.

PAGES

20-33

References to SciGraph publications

Journal

TITLE

Mathematical Programming

ISSUE

1

VOLUME

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01583777

DOI

http://dx.doi.org/10.1007/bf01583777

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017260290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Computer Science Department and Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Leary", 
        "givenName": "Dianne P.", 
        "id": "sg:person.01032137716.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032137716.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-12-141050-6.50023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002292932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1966-0234618-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005688998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008871312", 
          "https://doi.org/10.1007/bf01396177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00935624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014713541", 
          "https://doi.org/10.1007/bf00935624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00935624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014713541", 
          "https://doi.org/10.1007/bf00935624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0116614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044735847", 
          "https://doi.org/10.1007/bfb0116614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0116614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044735847", 
          "https://doi.org/10.1007/bfb0116614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01585529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045559631", 
          "https://doi.org/10.1007/bf01585529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/13.1.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/23.2.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0303013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0704002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0708060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0710031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0712047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.045.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073596918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-12", 
    "datePublishedReg": "1982-12-01", 
    "description": "A Newton-like method is presented for minimizing a function ofn variables. It uses only function and gradient values and is a variant of the discrete Newton algorithm. This variant requires fewer operations than the standard method whenn > 39, and storage is proportional ton rather thann2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01583777", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "A discrete Newton algorithm for minimizing a function of many variables", 
    "pagination": "20-33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "523c43890215cc2dc3438d56763283b4d4d3fb59c60b208f941fa7c1ffc75251"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01583777"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017260290"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01583777", 
      "https://app.dimensions.ai/details/publication/pub.1017260290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01583777"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      20 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01583777 schema:author N1c08da69c1d248d98232151a47fc07f8
2 schema:citation sg:pub.10.1007/bf00935624
3 sg:pub.10.1007/bf01396177
4 sg:pub.10.1007/bf01585529
5 sg:pub.10.1007/bfb0116614
6 https://doi.org/10.1016/b978-0-12-141050-6.50023-4
7 https://doi.org/10.1090/s0025-5718-1966-0234618-4
8 https://doi.org/10.1093/imamat/13.1.117
9 https://doi.org/10.1093/imamat/23.2.131
10 https://doi.org/10.1137/0303013
11 https://doi.org/10.1137/0704002
12 https://doi.org/10.1137/0708060
13 https://doi.org/10.1137/0710031
14 https://doi.org/10.1137/0712047
15 https://doi.org/10.1137/0716024
16 https://doi.org/10.1137/0716078
17 https://doi.org/10.6028/jres.045.026
18 https://doi.org/10.6028/jres.049.006
19 https://doi.org/10.6028/jres.049.044
20 schema:datePublished 1982-12
21 schema:datePublishedReg 1982-12-01
22 schema:description A Newton-like method is presented for minimizing a function ofn variables. It uses only function and gradient values and is a variant of the discrete Newton algorithm. This variant requires fewer operations than the standard method whenn > 39, and storage is proportional ton rather thann2.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N402c88df201049908f5ea5c32538ac37
27 Nee770dba63ee4912a12dee085f8ee040
28 sg:journal.1047630
29 schema:name A discrete Newton algorithm for minimizing a function of many variables
30 schema:pagination 20-33
31 schema:productId Na00baba2c2a74d88843d9adc591e3c4f
32 Nc680c9b7f3b442288cc6468667bf7ae1
33 Ncf9a5b2e4f8442588bfe5b0d4070a3f4
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017260290
35 https://doi.org/10.1007/bf01583777
36 schema:sdDatePublished 2019-04-11T02:14
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N9d66fd9464fe454e8ff3931533183772
39 schema:url http://link.springer.com/10.1007%2FBF01583777
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1c08da69c1d248d98232151a47fc07f8 rdf:first sg:person.01032137716.72
44 rdf:rest rdf:nil
45 N402c88df201049908f5ea5c32538ac37 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 N9d66fd9464fe454e8ff3931533183772 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Na00baba2c2a74d88843d9adc591e3c4f schema:name readcube_id
50 schema:value 523c43890215cc2dc3438d56763283b4d4d3fb59c60b208f941fa7c1ffc75251
51 rdf:type schema:PropertyValue
52 Nc680c9b7f3b442288cc6468667bf7ae1 schema:name doi
53 schema:value 10.1007/bf01583777
54 rdf:type schema:PropertyValue
55 Ncf9a5b2e4f8442588bfe5b0d4070a3f4 schema:name dimensions_id
56 schema:value pub.1017260290
57 rdf:type schema:PropertyValue
58 Nee770dba63ee4912a12dee085f8ee040 schema:volumeNumber 23
59 rdf:type schema:PublicationVolume
60 sg:journal.1047630 schema:issn 0025-5610
61 1436-4646
62 schema:name Mathematical Programming
63 rdf:type schema:Periodical
64 sg:person.01032137716.72 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
65 schema:familyName O'Leary
66 schema:givenName Dianne P.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032137716.72
68 rdf:type schema:Person
69 sg:pub.10.1007/bf00935624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014713541
70 https://doi.org/10.1007/bf00935624
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01396177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008871312
73 https://doi.org/10.1007/bf01396177
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01585529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045559631
76 https://doi.org/10.1007/bf01585529
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0116614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044735847
79 https://doi.org/10.1007/bfb0116614
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/b978-0-12-141050-6.50023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292932
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1090/s0025-5718-1966-0234618-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005688998
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1093/imamat/13.1.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684362
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1093/imamat/23.2.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684779
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1137/0303013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842559
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1137/0704002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850634
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1137/0708060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851992
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1137/0710031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852096
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1137/0712047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852294
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1137/0716024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852585
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1137/0716078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852639
102 rdf:type schema:CreativeWork
103 https://doi.org/10.6028/jres.045.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073596918
104 rdf:type schema:CreativeWork
105 https://doi.org/10.6028/jres.049.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597126
106 rdf:type schema:CreativeWork
107 https://doi.org/10.6028/jres.049.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597164
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
110 schema:name Computer Science Department and Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...