A discrete Newton algorithm for minimizing a function of many variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-12

AUTHORS

Dianne P. O'Leary

ABSTRACT

A Newton-like method is presented for minimizing a function ofn variables. It uses only function and gradient values and is a variant of the discrete Newton algorithm. This variant requires fewer operations than the standard method whenn > 39, and storage is proportional ton rather thann2.

PAGES

20-33

References to SciGraph publications

Journal

TITLE

Mathematical Programming

ISSUE

1

VOLUME

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01583777

DOI

http://dx.doi.org/10.1007/bf01583777

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017260290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Computer Science Department and Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Leary", 
        "givenName": "Dianne P.", 
        "id": "sg:person.01032137716.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032137716.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-12-141050-6.50023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002292932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1966-0234618-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005688998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008871312", 
          "https://doi.org/10.1007/bf01396177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00935624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014713541", 
          "https://doi.org/10.1007/bf00935624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00935624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014713541", 
          "https://doi.org/10.1007/bf00935624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0116614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044735847", 
          "https://doi.org/10.1007/bfb0116614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0116614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044735847", 
          "https://doi.org/10.1007/bfb0116614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01585529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045559631", 
          "https://doi.org/10.1007/bf01585529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/13.1.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/23.2.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0303013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0704002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0708060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0710031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0712047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.045.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073596918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-12", 
    "datePublishedReg": "1982-12-01", 
    "description": "A Newton-like method is presented for minimizing a function ofn variables. It uses only function and gradient values and is a variant of the discrete Newton algorithm. This variant requires fewer operations than the standard method whenn > 39, and storage is proportional ton rather thann2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01583777", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "A discrete Newton algorithm for minimizing a function of many variables", 
    "pagination": "20-33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "523c43890215cc2dc3438d56763283b4d4d3fb59c60b208f941fa7c1ffc75251"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01583777"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017260290"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01583777", 
      "https://app.dimensions.ai/details/publication/pub.1017260290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01583777"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01583777'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      20 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01583777 schema:author Nc45337bebab24123a12bc7470c1a54ca
2 schema:citation sg:pub.10.1007/bf00935624
3 sg:pub.10.1007/bf01396177
4 sg:pub.10.1007/bf01585529
5 sg:pub.10.1007/bfb0116614
6 https://doi.org/10.1016/b978-0-12-141050-6.50023-4
7 https://doi.org/10.1090/s0025-5718-1966-0234618-4
8 https://doi.org/10.1093/imamat/13.1.117
9 https://doi.org/10.1093/imamat/23.2.131
10 https://doi.org/10.1137/0303013
11 https://doi.org/10.1137/0704002
12 https://doi.org/10.1137/0708060
13 https://doi.org/10.1137/0710031
14 https://doi.org/10.1137/0712047
15 https://doi.org/10.1137/0716024
16 https://doi.org/10.1137/0716078
17 https://doi.org/10.6028/jres.045.026
18 https://doi.org/10.6028/jres.049.006
19 https://doi.org/10.6028/jres.049.044
20 schema:datePublished 1982-12
21 schema:datePublishedReg 1982-12-01
22 schema:description A Newton-like method is presented for minimizing a function ofn variables. It uses only function and gradient values and is a variant of the discrete Newton algorithm. This variant requires fewer operations than the standard method whenn > 39, and storage is proportional ton rather thann2.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N0b222c2337a44b4cb932114a05b4b35a
27 Nf615d21bb20f4280b4d7865396faa516
28 sg:journal.1047630
29 schema:name A discrete Newton algorithm for minimizing a function of many variables
30 schema:pagination 20-33
31 schema:productId N2e39a4a2d61e4da28d5741cf93314561
32 Nc439e375b2504ebd899aa6ef97a0fe6b
33 Ndc12c599ff1f43e5abdfa856ef35919f
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017260290
35 https://doi.org/10.1007/bf01583777
36 schema:sdDatePublished 2019-04-11T02:14
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N5222ec90c6b143b0b681279f88babc1d
39 schema:url http://link.springer.com/10.1007%2FBF01583777
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0b222c2337a44b4cb932114a05b4b35a schema:volumeNumber 23
44 rdf:type schema:PublicationVolume
45 N2e39a4a2d61e4da28d5741cf93314561 schema:name doi
46 schema:value 10.1007/bf01583777
47 rdf:type schema:PropertyValue
48 N5222ec90c6b143b0b681279f88babc1d schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nc439e375b2504ebd899aa6ef97a0fe6b schema:name dimensions_id
51 schema:value pub.1017260290
52 rdf:type schema:PropertyValue
53 Nc45337bebab24123a12bc7470c1a54ca rdf:first sg:person.01032137716.72
54 rdf:rest rdf:nil
55 Ndc12c599ff1f43e5abdfa856ef35919f schema:name readcube_id
56 schema:value 523c43890215cc2dc3438d56763283b4d4d3fb59c60b208f941fa7c1ffc75251
57 rdf:type schema:PropertyValue
58 Nf615d21bb20f4280b4d7865396faa516 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 sg:journal.1047630 schema:issn 0025-5610
61 1436-4646
62 schema:name Mathematical Programming
63 rdf:type schema:Periodical
64 sg:person.01032137716.72 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
65 schema:familyName O'Leary
66 schema:givenName Dianne P.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032137716.72
68 rdf:type schema:Person
69 sg:pub.10.1007/bf00935624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014713541
70 https://doi.org/10.1007/bf00935624
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01396177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008871312
73 https://doi.org/10.1007/bf01396177
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01585529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045559631
76 https://doi.org/10.1007/bf01585529
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bfb0116614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044735847
79 https://doi.org/10.1007/bfb0116614
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/b978-0-12-141050-6.50023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292932
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1090/s0025-5718-1966-0234618-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005688998
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1093/imamat/13.1.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684362
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1093/imamat/23.2.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684779
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1137/0303013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842559
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1137/0704002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850634
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1137/0708060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851992
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1137/0710031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852096
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1137/0712047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852294
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1137/0716024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852585
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1137/0716078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852639
102 rdf:type schema:CreativeWork
103 https://doi.org/10.6028/jres.045.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073596918
104 rdf:type schema:CreativeWork
105 https://doi.org/10.6028/jres.049.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597126
106 rdf:type schema:CreativeWork
107 https://doi.org/10.6028/jres.049.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597164
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
110 schema:name Computer Science Department and Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...