Sensitivity and uncertainty analysis of a sediment transport model: a global approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-12

AUTHORS

C. Chang, J. Yang, Y. Tung

ABSTRACT

Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed. More... »

PAGES

299-314

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01581617

DOI

http://dx.doi.org/10.1007/bf01581617

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023001223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Chiao Tung University", 
          "id": "https://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Dept. of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "C.", 
        "id": "sg:person.011225264111.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011225264111.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chiao Tung University", 
          "id": "https://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Dept. of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wyoming", 
          "id": "https://www.grid.ac/institutes/grid.135963.b", 
          "name": [
            "Wyoming Water Resources Center and Statistics Dept., University of Wyoming, 83071, Laramie, WY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tung", 
        "givenName": "Y.", 
        "id": "sg:person.07461771233.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07461771233.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jc095ic02p01713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039707346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1993)119:2(262)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057590190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118150740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106826631"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-12", 
    "datePublishedReg": "1993-12-01", 
    "description": "Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01581617", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1225521", 
        "issn": [
          "0931-1955", 
          "1435-151X"
        ], 
        "name": "Stochastic Hydrology and Hydraulics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Sensitivity and uncertainty analysis of a sediment transport model: a global approach", 
    "pagination": "299-314", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d954e9ad7faf3fea1a22a10f091cb839e71bd5ab0155a254650f605fde6e1ec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01581617"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023001223"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01581617", 
      "https://app.dimensions.ai/details/publication/pub.1023001223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01581617"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01581617'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01581617'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01581617'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01581617'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01581617 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nd8cade84f1d740c79620134713d9a490
4 schema:citation https://doi.org/10.1002/9781118150740
5 https://doi.org/10.1029/jc095ic02p01713
6 https://doi.org/10.1061/(asce)0733-9429(1993)119:2(262)
7 schema:datePublished 1993-12
8 schema:datePublishedReg 1993-12-01
9 schema:description Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N9068b06ce37541018f6a38f7a0a2353f
14 N976094fb3e2348829b9b6fb4347d1d68
15 sg:journal.1225521
16 schema:name Sensitivity and uncertainty analysis of a sediment transport model: a global approach
17 schema:pagination 299-314
18 schema:productId N41fe7d76d8b84f63903d856701caf46a
19 N5a54ed0271124ffb9b7284d4d2beac42
20 N69cac46d9d334236a6dacfdf103baf90
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023001223
22 https://doi.org/10.1007/bf01581617
23 schema:sdDatePublished 2019-04-11T13:34
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N97cb3ccd57ed4732b4bbde5f91b7be27
26 schema:url http://link.springer.com/10.1007/BF01581617
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N024acfd39cdf4cacb0627951e8b0bdd8 rdf:first N4feefdf213b54a44983ca52310187d0b
31 rdf:rest N433efa8ddb9e42b5a69076144ee81820
32 N41fe7d76d8b84f63903d856701caf46a schema:name doi
33 schema:value 10.1007/bf01581617
34 rdf:type schema:PropertyValue
35 N433efa8ddb9e42b5a69076144ee81820 rdf:first sg:person.07461771233.70
36 rdf:rest rdf:nil
37 N4feefdf213b54a44983ca52310187d0b schema:affiliation https://www.grid.ac/institutes/grid.260539.b
38 schema:familyName Yang
39 schema:givenName J.
40 rdf:type schema:Person
41 N5a54ed0271124ffb9b7284d4d2beac42 schema:name readcube_id
42 schema:value 6d954e9ad7faf3fea1a22a10f091cb839e71bd5ab0155a254650f605fde6e1ec
43 rdf:type schema:PropertyValue
44 N69cac46d9d334236a6dacfdf103baf90 schema:name dimensions_id
45 schema:value pub.1023001223
46 rdf:type schema:PropertyValue
47 N9068b06ce37541018f6a38f7a0a2353f schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 N976094fb3e2348829b9b6fb4347d1d68 schema:volumeNumber 7
50 rdf:type schema:PublicationVolume
51 N97cb3ccd57ed4732b4bbde5f91b7be27 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nd8cade84f1d740c79620134713d9a490 rdf:first sg:person.011225264111.47
54 rdf:rest N024acfd39cdf4cacb0627951e8b0bdd8
55 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
56 schema:name Earth Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Geography and Environmental Geoscience
60 rdf:type schema:DefinedTerm
61 sg:journal.1225521 schema:issn 0931-1955
62 1435-151X
63 schema:name Stochastic Hydrology and Hydraulics
64 rdf:type schema:Periodical
65 sg:person.011225264111.47 schema:affiliation https://www.grid.ac/institutes/grid.260539.b
66 schema:familyName Chang
67 schema:givenName C.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011225264111.47
69 rdf:type schema:Person
70 sg:person.07461771233.70 schema:affiliation https://www.grid.ac/institutes/grid.135963.b
71 schema:familyName Tung
72 schema:givenName Y.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07461771233.70
74 rdf:type schema:Person
75 https://doi.org/10.1002/9781118150740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106826631
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1029/jc095ic02p01713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039707346
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1061/(asce)0733-9429(1993)119:2(262) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057590190
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.135963.b schema:alternateName University of Wyoming
82 schema:name Wyoming Water Resources Center and Statistics Dept., University of Wyoming, 83071, Laramie, WY, USA
83 rdf:type schema:Organization
84 https://www.grid.ac/institutes/grid.260539.b schema:alternateName National Chiao Tung University
85 schema:name Dept. of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...