Superlinearly convergent variable metric algorithms for general nonlinear programming problems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1976-12

AUTHORS

Shih-Ping Han

ABSTRACT

In this paper sufficient conditions for local and superlinear convergence to a Kuhn—Tucker point are established for a class of algorithms which may be broadly defined and comprise a quadratic programming algorithm for repeated solution of a subproblem and a variable metric update to develop the Hessian in the subproblem. In particular the DFP update and an update attributed to Powell are shown to provide a superlinear convergent subclass of algorithms provided a start is made sufficiently close to the solution and the initial Hessian in the subproblem is sufficiently close to the Hessian of the Lagrangian at this point. More... »

PAGES

263-282

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01580395

DOI

http://dx.doi.org/10.1007/bf01580395

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053302753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Cornell University, Ithaca, N.Y., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Shih-Ping", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01584986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003936565", 
          "https://doi.org/10.1007/bf01584986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01585500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010194071", 
          "https://doi.org/10.1007/bf01585500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015269730", 
          "https://doi.org/10.1007/bf01580123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015269730", 
          "https://doi.org/10.1007/bf01580123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/6.2.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018099115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-597050-1.50006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020966097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028552390", 
          "https://doi.org/10.1007/bf00934961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028552390", 
          "https://doi.org/10.1007/bf00934961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1965-0198670-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034421108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00932858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040594673", 
          "https://doi.org/10.1007/bf00932858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1974-0343581-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321371.321377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049549026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/12.2.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052839649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/12.3.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0117067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062838534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-12", 
    "datePublishedReg": "1976-12-01", 
    "description": "In this paper sufficient conditions for local and superlinear convergence to a Kuhn\u2014Tucker point are established for a class of algorithms which may be broadly defined and comprise a quadratic programming algorithm for repeated solution of a subproblem and a variable metric update to develop the Hessian in the subproblem. In particular the DFP update and an update attributed to Powell are shown to provide a superlinear convergent subclass of algorithms provided a start is made sufficiently close to the solution and the initial Hessian in the subproblem is sufficiently close to the Hessian of the Lagrangian at this point.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01580395", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047630", 
        "issn": [
          "0025-5610", 
          "1436-4646"
        ], 
        "name": "Mathematical Programming", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Superlinearly convergent variable metric algorithms for general nonlinear programming problems", 
    "pagination": "263-282", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fde44f93683a154178aa5f485b22be8c5eaa4fb8e1493a584fce3a2577a4c9e3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01580395"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053302753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01580395", 
      "https://app.dimensions.ai/details/publication/pub.1053302753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01580395"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01580395'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01580395'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01580395'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01580395'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01580395 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7b79cbab5ca74ee0a6fbfb75e7f861c7
4 schema:citation sg:pub.10.1007/bf00932858
5 sg:pub.10.1007/bf00934961
6 sg:pub.10.1007/bf01580123
7 sg:pub.10.1007/bf01584986
8 sg:pub.10.1007/bf01585500
9 https://doi.org/10.1016/b978-0-12-597050-1.50006-3
10 https://doi.org/10.1090/s0025-5718-1965-0198670-6
11 https://doi.org/10.1090/s0025-5718-1974-0343581-1
12 https://doi.org/10.1093/comjnl/12.2.171
13 https://doi.org/10.1093/comjnl/6.2.163
14 https://doi.org/10.1093/imamat/12.3.223
15 https://doi.org/10.1137/0117067
16 https://doi.org/10.1145/321371.321377
17 schema:datePublished 1976-12
18 schema:datePublishedReg 1976-12-01
19 schema:description In this paper sufficient conditions for local and superlinear convergence to a Kuhn—Tucker point are established for a class of algorithms which may be broadly defined and comprise a quadratic programming algorithm for repeated solution of a subproblem and a variable metric update to develop the Hessian in the subproblem. In particular the DFP update and an update attributed to Powell are shown to provide a superlinear convergent subclass of algorithms provided a start is made sufficiently close to the solution and the initial Hessian in the subproblem is sufficiently close to the Hessian of the Lagrangian at this point.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N51538daef6844e5aabdee51ce665eb40
24 N75b7cc5058c54088b26e6fd5ff9817a2
25 sg:journal.1047630
26 schema:name Superlinearly convergent variable metric algorithms for general nonlinear programming problems
27 schema:pagination 263-282
28 schema:productId N1958a41a22d74d6a9d33d127220ff596
29 N2d9aecc097ed442982642d9d5d008379
30 Nc46f0cb1207c4c7694e4f25b58c5a5cf
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053302753
32 https://doi.org/10.1007/bf01580395
33 schema:sdDatePublished 2019-04-11T13:31
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N777bde927fb4402994683a13116fd8e7
36 schema:url http://link.springer.com/10.1007%2FBF01580395
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1958a41a22d74d6a9d33d127220ff596 schema:name readcube_id
41 schema:value fde44f93683a154178aa5f485b22be8c5eaa4fb8e1493a584fce3a2577a4c9e3
42 rdf:type schema:PropertyValue
43 N2d9aecc097ed442982642d9d5d008379 schema:name dimensions_id
44 schema:value pub.1053302753
45 rdf:type schema:PropertyValue
46 N51538daef6844e5aabdee51ce665eb40 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N52fb3a0c082540178eef57d7c66c37db schema:affiliation https://www.grid.ac/institutes/grid.5386.8
49 schema:familyName Han
50 schema:givenName Shih-Ping
51 rdf:type schema:Person
52 N75b7cc5058c54088b26e6fd5ff9817a2 schema:volumeNumber 11
53 rdf:type schema:PublicationVolume
54 N777bde927fb4402994683a13116fd8e7 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N7b79cbab5ca74ee0a6fbfb75e7f861c7 rdf:first N52fb3a0c082540178eef57d7c66c37db
57 rdf:rest rdf:nil
58 Nc46f0cb1207c4c7694e4f25b58c5a5cf schema:name doi
59 schema:value 10.1007/bf01580395
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1047630 schema:issn 0025-5610
68 1436-4646
69 schema:name Mathematical Programming
70 rdf:type schema:Periodical
71 sg:pub.10.1007/bf00932858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040594673
72 https://doi.org/10.1007/bf00932858
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00934961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028552390
75 https://doi.org/10.1007/bf00934961
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01580123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015269730
78 https://doi.org/10.1007/bf01580123
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01584986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003936565
81 https://doi.org/10.1007/bf01584986
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01585500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010194071
84 https://doi.org/10.1007/bf01585500
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/b978-0-12-597050-1.50006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020966097
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/s0025-5718-1965-0198670-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034421108
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s0025-5718-1974-0343581-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041195304
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1093/comjnl/12.2.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052839649
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1093/comjnl/6.2.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018099115
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1093/imamat/12.3.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684347
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1137/0117067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062838534
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1145/321371.321377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049549026
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
103 schema:name Cornell University, Ithaca, N.Y., USA
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...