On stability of solutions of theU(N) chiral model in two dimensions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-09

AUTHORS

B. Piette, I. Stokoe, W. J. Zakrzewski

ABSTRACT

We discuss the stability properties of classical solutions of theU(N) sigma models in two Euclidean dimensions. We show that all nontrivial solutions are unstable. For a general case we exhibit one mode of instability; in some special cases (corresponding to a grassmannian solution and an instantonic grassannian embedding) we exhibit two such independent modes. More... »

PAGES

449-455

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01578140

DOI

http://dx.doi.org/10.1007/bf01578140

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019890971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Institut de Physique Theorique, Universite Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "B.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stokoe", 
        "givenName": "I.", 
        "id": "sg:person.012767014245.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767014245.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakrzewski", 
        "givenName": "W. J.", 
        "id": "sg:person.07604432655.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07604432655.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(80)90525-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022758927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(80)90525-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022758927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(84)90003-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046365647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(84)90003-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046365647"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-09", 
    "datePublishedReg": "1988-09-01", 
    "description": "We discuss the stability properties of classical solutions of theU(N) sigma models in two Euclidean dimensions. We show that all nontrivial solutions are unstable. For a general case we exhibit one mode of instability; in some special cases (corresponding to a grassmannian solution and an instantonic grassannian embedding) we exhibit two such independent modes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01578140", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285003", 
        "issn": [
          "0170-9739", 
          "1431-5858"
        ], 
        "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "On stability of solutions of theU(N) chiral model in two dimensions", 
    "pagination": "449-455", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ec5457fe9dd275f8316b75b5a1fc9c2517326d0b45f42e18b3cafb603d137b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01578140"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019890971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01578140", 
      "https://app.dimensions.ai/details/publication/pub.1019890971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01578140"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01578140'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01578140'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01578140'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01578140'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01578140 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N20e1fb876c644da7bf20be88e3eb0b2e
4 schema:citation https://doi.org/10.1016/0393-0440(84)90003-2
5 https://doi.org/10.1016/0550-3213(80)90525-8
6 schema:datePublished 1988-09
7 schema:datePublishedReg 1988-09-01
8 schema:description We discuss the stability properties of classical solutions of theU(N) sigma models in two Euclidean dimensions. We show that all nontrivial solutions are unstable. For a general case we exhibit one mode of instability; in some special cases (corresponding to a grassmannian solution and an instantonic grassannian embedding) we exhibit two such independent modes.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N6844b96d1f9b41b5bd20434da75a8862
13 Nfd16d679957443d2b4fa96a2b82f8ac7
14 sg:journal.1285003
15 schema:name On stability of solutions of theU(N) chiral model in two dimensions
16 schema:pagination 449-455
17 schema:productId N26124b5c5ab046e9a7dc20109f920227
18 N5ce7c5854afd4e0c8aeea614cbaf190e
19 Ne16b7f564c954cd1824a3344db8fb22a
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019890971
21 https://doi.org/10.1007/bf01578140
22 schema:sdDatePublished 2019-04-11T13:29
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N4ab253b5d0824083882261ba75d81aa5
25 schema:url http://link.springer.com/10.1007/BF01578140
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N20e1fb876c644da7bf20be88e3eb0b2e rdf:first sg:person.014121444104.73
30 rdf:rest N2c642940e7af4abc9ca42638bdf66d33
31 N26124b5c5ab046e9a7dc20109f920227 schema:name readcube_id
32 schema:value 5ec5457fe9dd275f8316b75b5a1fc9c2517326d0b45f42e18b3cafb603d137b8
33 rdf:type schema:PropertyValue
34 N2c642940e7af4abc9ca42638bdf66d33 rdf:first sg:person.012767014245.36
35 rdf:rest N361c3e64f2f242bda8987e1f04061652
36 N361c3e64f2f242bda8987e1f04061652 rdf:first sg:person.07604432655.83
37 rdf:rest rdf:nil
38 N4ab253b5d0824083882261ba75d81aa5 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N5ce7c5854afd4e0c8aeea614cbaf190e schema:name doi
41 schema:value 10.1007/bf01578140
42 rdf:type schema:PropertyValue
43 N6844b96d1f9b41b5bd20434da75a8862 schema:issueNumber 3
44 rdf:type schema:PublicationIssue
45 Ne16b7f564c954cd1824a3344db8fb22a schema:name dimensions_id
46 schema:value pub.1019890971
47 rdf:type schema:PropertyValue
48 Nfd16d679957443d2b4fa96a2b82f8ac7 schema:volumeNumber 37
49 rdf:type schema:PublicationVolume
50 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
51 schema:name Chemical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
54 schema:name Physical Chemistry (incl. Structural)
55 rdf:type schema:DefinedTerm
56 sg:journal.1285003 schema:issn 0170-9739
57 1431-5858
58 schema:name Zeitschrift für Physik C Particles and Fields
59 rdf:type schema:Periodical
60 sg:person.012767014245.36 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
61 schema:familyName Stokoe
62 schema:givenName I.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767014245.36
64 rdf:type schema:Person
65 sg:person.014121444104.73 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
66 schema:familyName Piette
67 schema:givenName B.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
69 rdf:type schema:Person
70 sg:person.07604432655.83 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
71 schema:familyName Zakrzewski
72 schema:givenName W. J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07604432655.83
74 rdf:type schema:Person
75 https://doi.org/10.1016/0393-0440(84)90003-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046365647
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/0550-3213(80)90525-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022758927
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
80 schema:name Institut de Physique Theorique, Universite Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
81 rdf:type schema:Organization
82 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
83 schema:name Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, England
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...