Unbiased determination of forces causing observed processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-02

AUTHORS

Lisa Borland, Hermann Haken

ABSTRACT

Using measured short time correlation functions of a stochastic process as constraints in the maximum calibre principle of Jaynes, we formulate the joint probability distribution function of the process. The Lagrange multipliers which hereby occur are determined by minimizing a time-dependent form of the (Kullback) information gain. This step can alternatively be interpreted as if our system builds a neural network which “learns” the Lagrange multipliers. Next, we proceed to determine explicit formulas-expressed in terms of the Lagrange multipliers-for the drift and diffusion coefficients appearing in the corresponding Ito-Langevin equation, which describe the forces underlying the process. Computer-simulations of two processes are presented, showing good confirmation of the theory. More... »

PAGES

95-103

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01573843

DOI

http://dx.doi.org/10.1007/bf01573843

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007661638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institut f\u00fcr Theoretische Physik und Synergetik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57/4, W-7000, Stuttgart 80, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borland", 
        "givenName": "Lisa", 
        "id": "sg:person.012574031525.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012574031525.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institut f\u00fcr Theoretische Physik und Synergetik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57/4, W-7000, Stuttgart 80, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haken", 
        "givenName": "Hermann", 
        "id": "sg:person.012214634317.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214634317.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01726197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013034151", 
          "https://doi.org/10.1007/bf01726197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01726197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013034151", 
          "https://doi.org/10.1007/bf01726197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07893-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018601659", 
          "https://doi.org/10.1007/978-3-662-07893-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07893-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018601659", 
          "https://doi.org/10.1007/978-3-662-07893-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01726199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026035060", 
          "https://doi.org/10.1007/bf01726199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01726199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026035060", 
          "https://doi.org/10.1007/bf01726199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01317801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033078209", 
          "https://doi.org/10.1007/bf01317801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01317801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033078209", 
          "https://doi.org/10.1007/bf01317801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7035-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039836023", 
          "https://doi.org/10.1007/978-1-4615-7035-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7035-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039836023", 
          "https://doi.org/10.1007/978-1-4615-7035-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-02", 
    "datePublishedReg": "1992-02-01", 
    "description": "Using measured short time correlation functions of a stochastic process as constraints in the maximum calibre principle of Jaynes, we formulate the joint probability distribution function of the process. The Lagrange multipliers which hereby occur are determined by minimizing a time-dependent form of the (Kullback) information gain. This step can alternatively be interpreted as if our system builds a neural network which \u201clearns\u201d the Lagrange multipliers. Next, we proceed to determine explicit formulas-expressed in terms of the Lagrange multipliers-for the drift and diffusion coefficients appearing in the corresponding Ito-Langevin equation, which describe the forces underlying the process. Computer-simulations of two processes are presented, showing good confirmation of the theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01573843", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Unbiased determination of forces causing observed processes", 
    "pagination": "95-103", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "247eabef4f73f9a2c65c3c3d67f59167157f0154cffbba66008cde436305bd1c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01573843"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007661638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01573843", 
      "https://app.dimensions.ai/details/publication/pub.1007661638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01573843"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01573843'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01573843'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01573843'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01573843'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01573843 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne8a648eb68d1401b8db2485ca2fab725
4 schema:citation sg:pub.10.1007/978-1-4615-7035-6
5 sg:pub.10.1007/978-3-662-07893-8
6 sg:pub.10.1007/bf01317801
7 sg:pub.10.1007/bf01726197
8 sg:pub.10.1007/bf01726199
9 https://doi.org/10.1103/physrev.106.620
10 schema:datePublished 1992-02
11 schema:datePublishedReg 1992-02-01
12 schema:description Using measured short time correlation functions of a stochastic process as constraints in the maximum calibre principle of Jaynes, we formulate the joint probability distribution function of the process. The Lagrange multipliers which hereby occur are determined by minimizing a time-dependent form of the (Kullback) information gain. This step can alternatively be interpreted as if our system builds a neural network which “learns” the Lagrange multipliers. Next, we proceed to determine explicit formulas-expressed in terms of the Lagrange multipliers-for the drift and diffusion coefficients appearing in the corresponding Ito-Langevin equation, which describe the forces underlying the process. Computer-simulations of two processes are presented, showing good confirmation of the theory.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N0de0575cb9a54c29b11cba8fc15e0dd9
17 Nb743de155d594469ba6cedae297791d1
18 sg:journal.1285002
19 schema:name Unbiased determination of forces causing observed processes
20 schema:pagination 95-103
21 schema:productId N84db37bf2c2248fc86a0d57e0e05d523
22 N857d7f8c762b40bc98f2b7907ea0b7ad
23 Ne1bc9e4f66d94a0e8a5efbdc8c0c3d7d
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007661638
25 https://doi.org/10.1007/bf01573843
26 schema:sdDatePublished 2019-04-11T13:35
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N2871370beb4f440fa2a3feb5fd23a976
29 schema:url http://link.springer.com/10.1007/BF01573843
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0de0575cb9a54c29b11cba8fc15e0dd9 schema:issueNumber 1
34 rdf:type schema:PublicationIssue
35 N2871370beb4f440fa2a3feb5fd23a976 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N84db37bf2c2248fc86a0d57e0e05d523 schema:name readcube_id
38 schema:value 247eabef4f73f9a2c65c3c3d67f59167157f0154cffbba66008cde436305bd1c
39 rdf:type schema:PropertyValue
40 N857d7f8c762b40bc98f2b7907ea0b7ad schema:name doi
41 schema:value 10.1007/bf01573843
42 rdf:type schema:PropertyValue
43 N8a718a7252bc4e04aa1b655aac75263f rdf:first sg:person.012214634317.11
44 rdf:rest rdf:nil
45 Nb743de155d594469ba6cedae297791d1 schema:volumeNumber 88
46 rdf:type schema:PublicationVolume
47 Ne1bc9e4f66d94a0e8a5efbdc8c0c3d7d schema:name dimensions_id
48 schema:value pub.1007661638
49 rdf:type schema:PropertyValue
50 Ne8a648eb68d1401b8db2485ca2fab725 rdf:first sg:person.012574031525.49
51 rdf:rest N8a718a7252bc4e04aa1b655aac75263f
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
56 schema:name Statistics
57 rdf:type schema:DefinedTerm
58 sg:journal.1285002 schema:issn 0722-3277
59 1431-584X
60 schema:name Zeitschrift für Physik B Condensed Matter
61 rdf:type schema:Periodical
62 sg:person.012214634317.11 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
63 schema:familyName Haken
64 schema:givenName Hermann
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214634317.11
66 rdf:type schema:Person
67 sg:person.012574031525.49 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
68 schema:familyName Borland
69 schema:givenName Lisa
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012574031525.49
71 rdf:type schema:Person
72 sg:pub.10.1007/978-1-4615-7035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039836023
73 https://doi.org/10.1007/978-1-4615-7035-6
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/978-3-662-07893-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018601659
76 https://doi.org/10.1007/978-3-662-07893-8
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01317801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033078209
79 https://doi.org/10.1007/bf01317801
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01726197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013034151
82 https://doi.org/10.1007/bf01726197
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01726199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026035060
85 https://doi.org/10.1007/bf01726199
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.5719.a schema:alternateName University of Stuttgart
90 schema:name Institut für Theoretische Physik und Synergetik, Universität Stuttgart, Pfaffenwaldring 57/4, W-7000, Stuttgart 80, Federal Republic of Germany
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...