Multisolitons in a two-dimensional Skyrme model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1995-03

AUTHORS

B. M. A. G. Piette, B. J. Schroers, W. J. Zakrzewski

ABSTRACT

The Skyrme model can be generalised to a situation where static fields are maps from one Riemannian manifold to another. Here we study a Skyrme model where physical space is two-dimensional euclidean space and the target space is the two-sphere with its standard metric. The model has topological soliton solutions which are exponentially localised. We describe a superposition procedure for solitons in our model and derive an expression for the interaction potential of two solitons which only involves the solitons' asymptotic fields. If the solitons have topological degree 1 or 2 there are simple formulae for their interaction potentials which we use to prove the existence of solitons of higher degree. We explicitly compute the fields and energy distributions for solitons of degrees between one and six and discuss their geometrical shapes and binding energies. More... »

PAGES

165-174

References to SciGraph publications

  • 1987-09. Geometry of Skyrmions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1994-09. Dynamics of moving and spinning skyrmions in ZEITSCHRIFT FÜR PHYSIK C PARTICLES AND FIELDS
  • 1979-10. The principle of symmetric criticality in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01571317

    DOI

    http://dx.doi.org/10.1007/bf01571317

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035726100


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Mathematical Sciences, South Road, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Piette", 
            "givenName": "B. M. A. G.", 
            "id": "sg:person.014121444104.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mathematical Sciences, South Road, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schroers", 
            "givenName": "B. J.", 
            "id": "sg:person.013252425466.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252425466.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Mathematical Sciences, South Road, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakrzewski", 
            "givenName": "W. J.", 
            "id": "sg:person.01311240336.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311240336.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90445-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000733171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90445-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000733171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(90)90111-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005800158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(90)90111-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005800158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01413188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008427925", 
              "https://doi.org/10.1007/bf01413188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01413188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008427925", 
              "https://doi.org/10.1007/bf01413188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9474(94)90401-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013979493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9474(94)90401-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013979493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019864545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019864545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)90659-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031297517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)90659-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031297517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01941322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032231386", 
              "https://doi.org/10.1007/bf01941322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01941322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032231386", 
              "https://doi.org/10.1007/bf01941322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1961.0018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037916716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038434499", 
              "https://doi.org/10.1007/bf01238909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038434499", 
              "https://doi.org/10.1007/bf01238909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/5/2/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059110748"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-03", 
        "datePublishedReg": "1995-03-01", 
        "description": "The Skyrme model can be generalised to a situation where static fields are maps from one Riemannian manifold to another. Here we study a Skyrme model where physical space is two-dimensional euclidean space and the target space is the two-sphere with its standard metric. The model has topological soliton solutions which are exponentially localised. We describe a superposition procedure for solitons in our model and derive an expression for the interaction potential of two solitons which only involves the solitons' asymptotic fields. If the solitons have topological degree 1 or 2 there are simple formulae for their interaction potentials which we use to prove the existence of solitons of higher degree. We explicitly compute the fields and energy distributions for solitons of degrees between one and six and discuss their geometrical shapes and binding energies.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01571317", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1285003", 
            "issn": [
              "0170-9739", 
              "1431-5858"
            ], 
            "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "name": "Multisolitons in a two-dimensional Skyrme model", 
        "pagination": "165-174", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa2f9b98a575843adfad9b5aa1c2c2e89a64a636e80431cae26e0e7f8872f8ca"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01571317"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035726100"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01571317", 
          "https://app.dimensions.ai/details/publication/pub.1035726100"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01571317"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01571317'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01571317'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01571317'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01571317'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01571317 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Na74916ef52a84c12ab599b50787f0bd5
    4 schema:citation sg:pub.10.1007/bf01238909
    5 sg:pub.10.1007/bf01413188
    6 sg:pub.10.1007/bf01941322
    7 https://doi.org/10.1016/0029-5582(62)90775-7
    8 https://doi.org/10.1016/0370-2693(85)90445-9
    9 https://doi.org/10.1016/0370-2693(90)90111-i
    10 https://doi.org/10.1016/0370-2693(94)90659-9
    11 https://doi.org/10.1016/0375-9474(94)90401-4
    12 https://doi.org/10.1088/0951-7715/5/2/012
    13 https://doi.org/10.1098/rspa.1961.0018
    14 schema:datePublished 1995-03
    15 schema:datePublishedReg 1995-03-01
    16 schema:description The Skyrme model can be generalised to a situation where static fields are maps from one Riemannian manifold to another. Here we study a Skyrme model where physical space is two-dimensional euclidean space and the target space is the two-sphere with its standard metric. The model has topological soliton solutions which are exponentially localised. We describe a superposition procedure for solitons in our model and derive an expression for the interaction potential of two solitons which only involves the solitons' asymptotic fields. If the solitons have topological degree 1 or 2 there are simple formulae for their interaction potentials which we use to prove the existence of solitons of higher degree. We explicitly compute the fields and energy distributions for solitons of degrees between one and six and discuss their geometrical shapes and binding energies.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N58cc4b3526364b418c0d975cce0632df
    21 N6703101663c44e688e09be7cb658190b
    22 sg:journal.1285003
    23 schema:name Multisolitons in a two-dimensional Skyrme model
    24 schema:pagination 165-174
    25 schema:productId N391419f6cb7e452e864f891a3f71f766
    26 N7f519a7218864788aa2399e961199e0c
    27 Nd4e56aa02e6645bb904f223cfe465657
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035726100
    29 https://doi.org/10.1007/bf01571317
    30 schema:sdDatePublished 2019-04-11T13:27
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N9a669526cb8047e5a74efa76974a2415
    33 schema:url http://link.springer.com/10.1007/BF01571317
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N169c5ee992734ade9343e3cdd81b1f36 rdf:first sg:person.013252425466.24
    38 rdf:rest Nbdf8ac78a68a430da486ce830e984004
    39 N2c733722792542cd99bab0b6b0d5b3de schema:name Department of Mathematical Sciences, South Road, DH1 3LE, Durham, UK
    40 rdf:type schema:Organization
    41 N391419f6cb7e452e864f891a3f71f766 schema:name dimensions_id
    42 schema:value pub.1035726100
    43 rdf:type schema:PropertyValue
    44 N58cc4b3526364b418c0d975cce0632df schema:volumeNumber 65
    45 rdf:type schema:PublicationVolume
    46 N62898099fbd74cb3bb8943dc3f2f846c schema:name Department of Mathematical Sciences, South Road, DH1 3LE, Durham, UK
    47 rdf:type schema:Organization
    48 N6703101663c44e688e09be7cb658190b schema:issueNumber 1
    49 rdf:type schema:PublicationIssue
    50 N7f519a7218864788aa2399e961199e0c schema:name doi
    51 schema:value 10.1007/bf01571317
    52 rdf:type schema:PropertyValue
    53 N9a669526cb8047e5a74efa76974a2415 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Na56c62a01c1b4391a49dd2196bb1635f schema:name Department of Mathematical Sciences, South Road, DH1 3LE, Durham, UK
    56 rdf:type schema:Organization
    57 Na74916ef52a84c12ab599b50787f0bd5 rdf:first sg:person.014121444104.73
    58 rdf:rest N169c5ee992734ade9343e3cdd81b1f36
    59 Nbdf8ac78a68a430da486ce830e984004 rdf:first sg:person.01311240336.22
    60 rdf:rest rdf:nil
    61 Nd4e56aa02e6645bb904f223cfe465657 schema:name readcube_id
    62 schema:value aa2f9b98a575843adfad9b5aa1c2c2e89a64a636e80431cae26e0e7f8872f8ca
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Physical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1285003 schema:issn 0170-9739
    71 1431-5858
    72 schema:name Zeitschrift für Physik C Particles and Fields
    73 rdf:type schema:Periodical
    74 sg:person.01311240336.22 schema:affiliation N2c733722792542cd99bab0b6b0d5b3de
    75 schema:familyName Zakrzewski
    76 schema:givenName W. J.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311240336.22
    78 rdf:type schema:Person
    79 sg:person.013252425466.24 schema:affiliation Na56c62a01c1b4391a49dd2196bb1635f
    80 schema:familyName Schroers
    81 schema:givenName B. J.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252425466.24
    83 rdf:type schema:Person
    84 sg:person.014121444104.73 schema:affiliation N62898099fbd74cb3bb8943dc3f2f846c
    85 schema:familyName Piette
    86 schema:givenName B. M. A. G.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf01238909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038434499
    90 https://doi.org/10.1007/bf01238909
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01413188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008427925
    93 https://doi.org/10.1007/bf01413188
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01941322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032231386
    96 https://doi.org/10.1007/bf01941322
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/0370-2693(85)90445-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000733171
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0370-2693(90)90111-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1005800158
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0370-2693(94)90659-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031297517
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/0375-9474(94)90401-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013979493
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1088/0951-7715/5/2/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110748
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1098/rspa.1961.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916716
    111 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...