Application of neural networks for controlling and predicting quality parameters in beer fermentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-11

AUTHORS

L A García, F Argüeso, A I García, M Díaz

ABSTRACT

The biochemical pathways involved in the production of ethyl caproate, a secondary product of the beer fermentation process, are not well established. Hence, there are no phenomenological models available to control and predict the production of this particular compound as with other related products. In this work, neural networks have been used to fit experimental results with constant and variable pH, giving a good fit of laboratory and industrial scale data. The results at constant pH were also used to predict results at variable pH. Finally, the application of neural networks obtained from laboratory experiments gave excellent predictions of results in industrial breweries and so could be used in the control of industrial operations. The input pattern to the neural network included the accumulated fermentation time, cell dry weight, consumption of sugars and aminoacids and, in some cases, the pH. The output from the neural network was an estimation of quantity of the ethyl caproate ester. More... »

PAGES

401-406

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01569964

DOI

http://dx.doi.org/10.1007/bf01569964

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021053886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Chemical Engineering, IUBA, University of Oviedo, C/Juli\u00e1n Claver\u00eda s/n, 33071, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "L A", 
        "id": "sg:person.016476005331.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476005331.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Chemical Engineering, IUBA, University of Oviedo, C/Juli\u00e1n Claver\u00eda s/n, 33071, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arg\u00fceso", 
        "givenName": "F", 
        "id": "sg:person.013454247655.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454247655.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Chemical Engineering, IUBA, University of Oviedo, C/Juli\u00e1n Claver\u00eda s/n, 33071, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "A I", 
        "id": "sg:person.01362465516.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362465516.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Chemical Engineering, IUBA, University of Oviedo, C/Juli\u00e1n Claver\u00eda s/n, 33071, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00edaz", 
        "givenName": "M", 
        "id": "sg:person.01153521756.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153521756.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0168-1656(93)90109-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000919441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1656(93)90109-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000919441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260440402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004435889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-1354(88)87015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007568024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-9592(94)80073-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011793696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(94)90111-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012786890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(94)90111-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012786890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-1354(90)87070-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014049393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.2050-0416.1994.tb00819.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016924486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260361009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020804247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260430608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039227535"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-11", 
    "datePublishedReg": "1995-11-01", 
    "description": "The biochemical pathways involved in the production of ethyl caproate, a secondary product of the beer fermentation process, are not well established. Hence, there are no phenomenological models available to control and predict the production of this particular compound as with other related products. In this work, neural networks have been used to fit experimental results with constant and variable pH, giving a good fit of laboratory and industrial scale data. The results at constant pH were also used to predict results at variable pH. Finally, the application of neural networks obtained from laboratory experiments gave excellent predictions of results in industrial breweries and so could be used in the control of industrial operations. The input pattern to the neural network included the accumulated fermentation time, cell dry weight, consumption of sugars and aminoacids and, in some cases, the pH. The output from the neural network was an estimation of quantity of the ethyl caproate ester.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01569964", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1096599", 
        "issn": [
          "1367-5435", 
          "1476-5535"
        ], 
        "name": "Journal of Industrial Microbiology & Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Application of neural networks for controlling and predicting quality parameters in beer fermentation", 
    "pagination": "401-406", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64500a450162da6d4ba3287f59f057d68a1366d2d91ab9df4ae6b4ed8f3870ec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01569964"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021053886"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01569964", 
      "https://app.dimensions.ai/details/publication/pub.1021053886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01569964"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01569964'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01569964'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01569964'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01569964'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01569964 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbbfc384e0a594af79024dbbd6603e934
4 schema:citation https://doi.org/10.1002/bit.260361009
5 https://doi.org/10.1002/bit.260430608
6 https://doi.org/10.1002/bit.260440402
7 https://doi.org/10.1002/j.2050-0416.1994.tb00819.x
8 https://doi.org/10.1016/0032-9592(94)80073-1
9 https://doi.org/10.1016/0098-1354(88)87015-7
10 https://doi.org/10.1016/0098-1354(90)87070-6
11 https://doi.org/10.1016/0141-0229(94)90111-2
12 https://doi.org/10.1016/0168-1656(93)90109-z
13 schema:datePublished 1995-11
14 schema:datePublishedReg 1995-11-01
15 schema:description The biochemical pathways involved in the production of ethyl caproate, a secondary product of the beer fermentation process, are not well established. Hence, there are no phenomenological models available to control and predict the production of this particular compound as with other related products. In this work, neural networks have been used to fit experimental results with constant and variable pH, giving a good fit of laboratory and industrial scale data. The results at constant pH were also used to predict results at variable pH. Finally, the application of neural networks obtained from laboratory experiments gave excellent predictions of results in industrial breweries and so could be used in the control of industrial operations. The input pattern to the neural network included the accumulated fermentation time, cell dry weight, consumption of sugars and aminoacids and, in some cases, the pH. The output from the neural network was an estimation of quantity of the ethyl caproate ester.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N18dafec18be441b796f615cca5017a0b
20 N7958aab534654af0891b13ea0634862a
21 sg:journal.1096599
22 schema:name Application of neural networks for controlling and predicting quality parameters in beer fermentation
23 schema:pagination 401-406
24 schema:productId N197535b71c4b4a0f99340a466cde7ee3
25 N80abfe2e18fa4b978b9266c6b2302d6c
26 N87b964467881438eb9a335e5bc0c7682
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021053886
28 https://doi.org/10.1007/bf01569964
29 schema:sdDatePublished 2019-04-11T13:32
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N271333c1fb1e4f6b9bb64714c4e7af34
32 schema:url http://link.springer.com/10.1007/BF01569964
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N18dafec18be441b796f615cca5017a0b schema:volumeNumber 15
37 rdf:type schema:PublicationVolume
38 N197535b71c4b4a0f99340a466cde7ee3 schema:name dimensions_id
39 schema:value pub.1021053886
40 rdf:type schema:PropertyValue
41 N1ae5c83c0c104b39b66588c152b8c94c rdf:first sg:person.013454247655.13
42 rdf:rest Nd411302585614c418d67f8312f3d5b7a
43 N271333c1fb1e4f6b9bb64714c4e7af34 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N296f2446e3ee4ee7b9dd46f636b7c5f6 rdf:first sg:person.01153521756.12
46 rdf:rest rdf:nil
47 N7958aab534654af0891b13ea0634862a schema:issueNumber 5
48 rdf:type schema:PublicationIssue
49 N80abfe2e18fa4b978b9266c6b2302d6c schema:name doi
50 schema:value 10.1007/bf01569964
51 rdf:type schema:PropertyValue
52 N87b964467881438eb9a335e5bc0c7682 schema:name readcube_id
53 schema:value 64500a450162da6d4ba3287f59f057d68a1366d2d91ab9df4ae6b4ed8f3870ec
54 rdf:type schema:PropertyValue
55 Nbbfc384e0a594af79024dbbd6603e934 rdf:first sg:person.016476005331.49
56 rdf:rest N1ae5c83c0c104b39b66588c152b8c94c
57 Nd411302585614c418d67f8312f3d5b7a rdf:first sg:person.01362465516.27
58 rdf:rest N296f2446e3ee4ee7b9dd46f636b7c5f6
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
65 sg:journal.1096599 schema:issn 1367-5435
66 1476-5535
67 schema:name Journal of Industrial Microbiology & Biotechnology
68 rdf:type schema:Periodical
69 sg:person.01153521756.12 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
70 schema:familyName Díaz
71 schema:givenName M
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153521756.12
73 rdf:type schema:Person
74 sg:person.013454247655.13 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
75 schema:familyName Argüeso
76 schema:givenName F
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454247655.13
78 rdf:type schema:Person
79 sg:person.01362465516.27 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
80 schema:familyName García
81 schema:givenName A I
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362465516.27
83 rdf:type schema:Person
84 sg:person.016476005331.49 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
85 schema:familyName García
86 schema:givenName L A
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476005331.49
88 rdf:type schema:Person
89 https://doi.org/10.1002/bit.260361009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020804247
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/bit.260430608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039227535
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/bit.260440402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004435889
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/j.2050-0416.1994.tb00819.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016924486
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0032-9592(94)80073-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011793696
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0098-1354(88)87015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007568024
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0098-1354(90)87070-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014049393
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0141-0229(94)90111-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012786890
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0168-1656(93)90109-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000919441
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
108 schema:name Department of Chemical Engineering, IUBA, University of Oviedo, C/Julián Clavería s/n, 33071, Oviedo, Spain
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...