Link between the geometrical and the spectral transformation approaches in scattering theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1979-02

AUTHORS

Eric Mourre

ABSTRACT

We show how the Enss's geometrical proof of asymptotic completeness may be set on commutator properties.

PAGES

91-94

References to SciGraph publications

  • 1971-12. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1971-12. A class of analytic perturbations for one-body Schrödinger Hamiltonians in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1978-08. Asymptotic completeness for quantum mechanical potential scattering in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01562544

    DOI

    http://dx.doi.org/10.1007/bf01562544

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008716980


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre de Physique Th\u00e9orique, C.N.R.S., F-13288, Marseille, France", 
              "id": "http://www.grid.ac/institutes/grid.469407.8", 
              "name": [
                "Centre de Physique Th\u00e9orique, C.N.R.S., F-13288, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mourre", 
            "givenName": "Eric", 
            "id": "sg:person.011157413742.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157413742.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01877511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043069953", 
              "https://doi.org/10.1007/bf01877511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01940771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049360332", 
              "https://doi.org/10.1007/bf01940771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043949968", 
              "https://doi.org/10.1007/bf01877510"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-02", 
        "datePublishedReg": "1979-02-01", 
        "description": "We show how the Enss's geometrical proof of asymptotic completeness may be set on commutator properties.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01562544", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "68"
          }
        ], 
        "keywords": [
          "asymptotic completeness", 
          "spectral transformation", 
          "commutator property", 
          "properties", 
          "theory", 
          "geometrical proof", 
          "proof", 
          "completeness", 
          "transformation"
        ], 
        "name": "Link between the geometrical and the spectral transformation approaches in scattering theory", 
        "pagination": "91-94", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008716980"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01562544"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01562544", 
          "https://app.dimensions.ai/details/publication/pub.1008716980"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_105.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01562544"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01562544'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01562544'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01562544'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01562544'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      22 PREDICATES      41 URIs      27 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01562544 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 anzsrc-for:02
    5 anzsrc-for:0206
    6 schema:author N870a91a5345a47769ebe117fdaa06dd9
    7 schema:citation sg:pub.10.1007/bf01877510
    8 sg:pub.10.1007/bf01877511
    9 sg:pub.10.1007/bf01940771
    10 schema:datePublished 1979-02
    11 schema:datePublishedReg 1979-02-01
    12 schema:description We show how the Enss's geometrical proof of asymptotic completeness may be set on commutator properties.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N4e4f09384985450282ff17358e729757
    17 Nb1e2e963e57d4121bfeeb1131d1c90a6
    18 sg:journal.1136216
    19 schema:keywords asymptotic completeness
    20 commutator property
    21 completeness
    22 geometrical proof
    23 proof
    24 properties
    25 spectral transformation
    26 theory
    27 transformation
    28 schema:name Link between the geometrical and the spectral transformation approaches in scattering theory
    29 schema:pagination 91-94
    30 schema:productId N3b4f1ea6588d43acbf05e97c5a0bf286
    31 Nef314c5de64a486ca0476d9e5f2d590d
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008716980
    33 https://doi.org/10.1007/bf01562544
    34 schema:sdDatePublished 2022-06-01T21:56
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N72c9da6eeed349b8b42bde3bb81f1357
    37 schema:url https://doi.org/10.1007/bf01562544
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N3b4f1ea6588d43acbf05e97c5a0bf286 schema:name doi
    42 schema:value 10.1007/bf01562544
    43 rdf:type schema:PropertyValue
    44 N4e4f09384985450282ff17358e729757 schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 N72c9da6eeed349b8b42bde3bb81f1357 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N870a91a5345a47769ebe117fdaa06dd9 rdf:first sg:person.011157413742.08
    49 rdf:rest rdf:nil
    50 Nb1e2e963e57d4121bfeeb1131d1c90a6 schema:volumeNumber 68
    51 rdf:type schema:PublicationVolume
    52 Nef314c5de64a486ca0476d9e5f2d590d schema:name dimensions_id
    53 schema:value pub.1008716980
    54 rdf:type schema:PropertyValue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Physics
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Physical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Quantum Physics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136216 schema:issn 0010-3616
    71 1432-0916
    72 schema:name Communications in Mathematical Physics
    73 schema:publisher Springer Nature
    74 rdf:type schema:Periodical
    75 sg:person.011157413742.08 schema:affiliation grid-institutes:grid.469407.8
    76 schema:familyName Mourre
    77 schema:givenName Eric
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011157413742.08
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf01877510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043949968
    81 https://doi.org/10.1007/bf01877510
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf01877511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043069953
    84 https://doi.org/10.1007/bf01877511
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf01940771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049360332
    87 https://doi.org/10.1007/bf01940771
    88 rdf:type schema:CreativeWork
    89 grid-institutes:grid.469407.8 schema:alternateName Centre de Physique Théorique, C.N.R.S., F-13288, Marseille, France
    90 schema:name Centre de Physique Théorique, C.N.R.S., F-13288, Marseille, France
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...