QCD parametrization of the ργ, ωγ and Φγ couplings: whyfργ:fωγ=3:1 in spite of flavor breaking View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-09

AUTHORS

G. Dillon, G. Morpurgo

ABSTRACT

A quasi no flavor breaking theorem, derived from QCD for a class of hadronic states, is used to show that the ratio of ϱγ to ωγ coupling-for ideal ω-ϕ mixing-is almost (to a part in 102) unaffected by flavor breaking, and, therefore, equal to 3. On the other hand the ratio of ϱγ to ϕγ coupling, (not governed by the theorem) must differ, due to flavor breaking, from the unbrokenSU3 value. The data are consistent with these predictions. As a byproduct we determine the small deviation δυ≈−3° of the mixing vector angle from the ideal value (35.3o), including its sign, that turns out to be negative (opposite to the positive traditional value based on an approximate mass analysis). The derivation of the quasi no flavor breaking theorem is based, as shown in a previous paper, on the method of general parametrization. It exploits the simpleSU3 (flavor) structure of the QCD Lagrangian. We note some consequences of the theorem relevant to the equivalence to QCD of certain effective Lagrangian theories and models. More... »

PAGES

467-473

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01560108

DOI

http://dx.doi.org/10.1007/bf01560108

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007558978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Istituto di Fisica dell Universita' and INFN-Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dillon", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Istituto di Fisica dell Universita' and INFN-Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morpurgo", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01559522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003931573", 
          "https://doi.org/10.1007/bf01559522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01559522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003931573", 
          "https://doi.org/10.1007/bf01559522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ns.20.120170.000541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039723545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.40.2997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.40.2997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.40.3111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.40.3111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060697631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.41.2865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060698149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.41.2865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060698149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.42.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060698453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.42.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060698453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.45.1686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060699958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.45.1686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060699958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.4068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.4068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804136"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-09", 
    "datePublishedReg": "1994-09-01", 
    "description": "A quasi no flavor breaking theorem, derived from QCD for a class of hadronic states, is used to show that the ratio of \u03f1\u03b3 to \u03c9\u03b3 coupling-for ideal \u03c9-\u03d5 mixing-is almost (to a part in 102) unaffected by flavor breaking, and, therefore, equal to 3. On the other hand the ratio of \u03f1\u03b3 to \u03d5\u03b3 coupling, (not governed by the theorem) must differ, due to flavor breaking, from the unbrokenSU3 value. The data are consistent with these predictions. As a byproduct we determine the small deviation \u03b4\u03c5\u2248\u22123\u00b0 of the mixing vector angle from the ideal value (35.3o), including its sign, that turns out to be negative (opposite to the positive traditional value based on an approximate mass analysis). The derivation of the quasi no flavor breaking theorem is based, as shown in a previous paper, on the method of general parametrization. It exploits the simpleSU3 (flavor) structure of the QCD Lagrangian. We note some consequences of the theorem relevant to the equivalence to QCD of certain effective Lagrangian theories and models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01560108", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285003", 
        "issn": [
          "0170-9739", 
          "1431-5858"
        ], 
        "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "QCD parametrization of the \u03c1\u03b3, \u03c9\u03b3 and \u03a6\u03b3 couplings: whyf\u03c1\u03b3:f\u03c9\u03b3=3:1 in spite of flavor breaking", 
    "pagination": "467-473", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "24017a05d4dade25217c3b0405baf03f7cdc17c595f1477e5b0893a2150a1e44"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01560108"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007558978"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01560108", 
      "https://app.dimensions.ai/details/publication/pub.1007558978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01560108"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01560108'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01560108'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01560108'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01560108'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01560108 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N08dbe8450d574921ae33ca1defd9649a
4 schema:citation sg:pub.10.1007/bf01559522
5 https://doi.org/10.1103/physrevd.40.2997
6 https://doi.org/10.1103/physrevd.40.3111
7 https://doi.org/10.1103/physrevd.41.2865
8 https://doi.org/10.1103/physrevd.42.1497
9 https://doi.org/10.1103/physrevd.45.1686
10 https://doi.org/10.1103/physrevd.46.4068
11 https://doi.org/10.1103/physrevlett.68.139
12 https://doi.org/10.1146/annurev.ns.20.120170.000541
13 schema:datePublished 1994-09
14 schema:datePublishedReg 1994-09-01
15 schema:description A quasi no flavor breaking theorem, derived from QCD for a class of hadronic states, is used to show that the ratio of ϱγ to ωγ coupling-for ideal ω-ϕ mixing-is almost (to a part in 102) unaffected by flavor breaking, and, therefore, equal to 3. On the other hand the ratio of ϱγ to ϕγ coupling, (not governed by the theorem) must differ, due to flavor breaking, from the unbrokenSU3 value. The data are consistent with these predictions. As a byproduct we determine the small deviation δυ≈−3° of the mixing vector angle from the ideal value (35.3o), including its sign, that turns out to be negative (opposite to the positive traditional value based on an approximate mass analysis). The derivation of the quasi no flavor breaking theorem is based, as shown in a previous paper, on the method of general parametrization. It exploits the simpleSU3 (flavor) structure of the QCD Lagrangian. We note some consequences of the theorem relevant to the equivalence to QCD of certain effective Lagrangian theories and models.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N0c23cdb5737942c78373e1a5acdee5fc
20 Nc9312ccb727b441480868fe7e89359e7
21 sg:journal.1285003
22 schema:name QCD parametrization of the ργ, ωγ and Φγ couplings: whyfργ:fωγ=3:1 in spite of flavor breaking
23 schema:pagination 467-473
24 schema:productId N292104517415481592709c464ba1285f
25 Nb84fb2c869fc4c6dac5ca259cd29dc57
26 Nbf5c72502d1c499f944276f80ad55f6a
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007558978
28 https://doi.org/10.1007/bf01560108
29 schema:sdDatePublished 2019-04-11T13:28
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nd567b3e19043410cb9faf7dea80bfceb
32 schema:url http://link.springer.com/10.1007/BF01560108
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N08dbe8450d574921ae33ca1defd9649a rdf:first N39d432e718384c9b8868a6e2af1ecdd4
37 rdf:rest N286ea6927ee64e378b7429e114d057fc
38 N0c23cdb5737942c78373e1a5acdee5fc schema:issueNumber 3
39 rdf:type schema:PublicationIssue
40 N27767844d40a439bba52e321c6ade9cd schema:name Istituto di Fisica dell Universita' and INFN-Genova, Italy
41 rdf:type schema:Organization
42 N286ea6927ee64e378b7429e114d057fc rdf:first N7c1ad6c4806b400b88f98bd49ae82bb4
43 rdf:rest rdf:nil
44 N292104517415481592709c464ba1285f schema:name readcube_id
45 schema:value 24017a05d4dade25217c3b0405baf03f7cdc17c595f1477e5b0893a2150a1e44
46 rdf:type schema:PropertyValue
47 N39d432e718384c9b8868a6e2af1ecdd4 schema:affiliation N5545c875b986471482ff932fbb5d78f4
48 schema:familyName Dillon
49 schema:givenName G.
50 rdf:type schema:Person
51 N5545c875b986471482ff932fbb5d78f4 schema:name Istituto di Fisica dell Universita' and INFN-Genova, Italy
52 rdf:type schema:Organization
53 N7c1ad6c4806b400b88f98bd49ae82bb4 schema:affiliation N27767844d40a439bba52e321c6ade9cd
54 schema:familyName Morpurgo
55 schema:givenName G.
56 rdf:type schema:Person
57 Nb84fb2c869fc4c6dac5ca259cd29dc57 schema:name doi
58 schema:value 10.1007/bf01560108
59 rdf:type schema:PropertyValue
60 Nbf5c72502d1c499f944276f80ad55f6a schema:name dimensions_id
61 schema:value pub.1007558978
62 rdf:type schema:PropertyValue
63 Nc9312ccb727b441480868fe7e89359e7 schema:volumeNumber 64
64 rdf:type schema:PublicationVolume
65 Nd567b3e19043410cb9faf7dea80bfceb schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
68 schema:name Psychology and Cognitive Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
71 schema:name Psychology
72 rdf:type schema:DefinedTerm
73 sg:journal.1285003 schema:issn 0170-9739
74 1431-5858
75 schema:name Zeitschrift für Physik C Particles and Fields
76 rdf:type schema:Periodical
77 sg:pub.10.1007/bf01559522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003931573
78 https://doi.org/10.1007/bf01559522
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrevd.40.2997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060697617
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrevd.40.3111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060697631
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrevd.41.2865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060698149
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevd.42.1497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060698453
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevd.45.1686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060699958
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevd.46.4068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060700727
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevlett.68.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804136
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1146/annurev.ns.20.120170.000541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039723545
95 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...