A class of two dimensional models with extended structure solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-09

AUTHORS

B. Piette, D. H. Tchrakian, W. J. Zakrzewski

ABSTRACT

We study some properties of a class of two-dimensional models which have infinite dimensional groups of symmetry which include both the Euclidean and Minkowskian groups. We show that all solutions of these models are self-dual and correspond to mappings of the 2 dimensional plane into itself which locally preserve the area. When treated as candidates for soliton-like structures we see that the structures are localised. In most cases the energy density of these structures has a power-like tail; in some cases, e.g. the modified sine-Gordon model, the localisation is exponential. More... »

PAGES

497-502

References to SciGraph publications

  • 1991. Interactions of solitons in (2+1) dimensions in NONLINEAR COHERENT STRUCTURES IN PHYSICS AND BIOLOGY
  • 1980-02. Local theory of solutions for the 0(2k+1) σ-model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01559470

    DOI

    http://dx.doi.org/10.1007/bf01559470

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008178320


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Durham University", 
              "id": "https://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Piette", 
            "givenName": "B.", 
            "id": "sg:person.014121444104.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dublin Institute For Advanced Studies", 
              "id": "https://www.grid.ac/institutes/grid.55940.3d", 
              "name": [
                "Department of Mathematical Physics, St. Patrick College, Maynooth, Ireland", 
                "STP-Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tchrakian", 
            "givenName": "D. H.", 
            "id": "sg:person.015677715153.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Durham University", 
              "id": "https://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakrzewski", 
            "givenName": "W. J.", 
            "id": "sg:person.014640770123.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01200112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026324737", 
              "https://doi.org/10.1007/bf01200112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01200112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026324737", 
              "https://doi.org/10.1007/bf01200112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-54890-4_177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039554745", 
              "https://doi.org/10.1007/3-540-54890-4_177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/23/8/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059071434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139172059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098775173"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-09", 
        "datePublishedReg": "1992-09-01", 
        "description": "We study some properties of a class of two-dimensional models which have infinite dimensional groups of symmetry which include both the Euclidean and Minkowskian groups. We show that all solutions of these models are self-dual and correspond to mappings of the 2 dimensional plane into itself which locally preserve the area. When treated as candidates for soliton-like structures we see that the structures are localised. In most cases the energy density of these structures has a power-like tail; in some cases, e.g. the modified sine-Gordon model, the localisation is exponential.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01559470", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285003", 
            "issn": [
              "0170-9739", 
              "1431-5858"
            ], 
            "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "A class of two dimensional models with extended structure solutions", 
        "pagination": "497-502", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "26f6c7012b893f096a604777dea099cece6c8241e44bfbba28e8b40b091e2cc5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01559470"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008178320"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01559470", 
          "https://app.dimensions.ai/details/publication/pub.1008178320"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01559470"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'


     

    This table displays all metadata directly associated to this object as RDF triples.

    93 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01559470 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbef276891db8421db3fa1c6bdc107217
    4 schema:citation sg:pub.10.1007/3-540-54890-4_177
    5 sg:pub.10.1007/bf01200112
    6 https://doi.org/10.1017/cbo9781139172059
    7 https://doi.org/10.1088/0305-4470/23/8/003
    8 schema:datePublished 1992-09
    9 schema:datePublishedReg 1992-09-01
    10 schema:description We study some properties of a class of two-dimensional models which have infinite dimensional groups of symmetry which include both the Euclidean and Minkowskian groups. We show that all solutions of these models are self-dual and correspond to mappings of the 2 dimensional plane into itself which locally preserve the area. When treated as candidates for soliton-like structures we see that the structures are localised. In most cases the energy density of these structures has a power-like tail; in some cases, e.g. the modified sine-Gordon model, the localisation is exponential.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N52832c796f6142a9b1050162368203b2
    15 Nda1f2024e5d4480cb1dd1dbec6094659
    16 sg:journal.1285003
    17 schema:name A class of two dimensional models with extended structure solutions
    18 schema:pagination 497-502
    19 schema:productId N4382f7f8903f484b8e9255a508f9fba1
    20 N9bd1ed1c8ef84d63a33292cf274d750b
    21 Nad7fc506373247ce9d5c42a0378ec97f
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008178320
    23 https://doi.org/10.1007/bf01559470
    24 schema:sdDatePublished 2019-04-11T13:30
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Nb1374eba9bf940ed9ed854e19c9c2b86
    27 schema:url http://link.springer.com/10.1007/BF01559470
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N22b1eb055b0c4087a1852c2b415bf37e rdf:first sg:person.015677715153.97
    32 rdf:rest N815fc974f73847bf84272a591107c58e
    33 N4382f7f8903f484b8e9255a508f9fba1 schema:name dimensions_id
    34 schema:value pub.1008178320
    35 rdf:type schema:PropertyValue
    36 N52832c796f6142a9b1050162368203b2 schema:volumeNumber 54
    37 rdf:type schema:PublicationVolume
    38 N815fc974f73847bf84272a591107c58e rdf:first sg:person.014640770123.34
    39 rdf:rest rdf:nil
    40 N9bd1ed1c8ef84d63a33292cf274d750b schema:name readcube_id
    41 schema:value 26f6c7012b893f096a604777dea099cece6c8241e44bfbba28e8b40b091e2cc5
    42 rdf:type schema:PropertyValue
    43 Nad7fc506373247ce9d5c42a0378ec97f schema:name doi
    44 schema:value 10.1007/bf01559470
    45 rdf:type schema:PropertyValue
    46 Nb1374eba9bf940ed9ed854e19c9c2b86 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nbef276891db8421db3fa1c6bdc107217 rdf:first sg:person.014121444104.73
    49 rdf:rest N22b1eb055b0c4087a1852c2b415bf37e
    50 Nda1f2024e5d4480cb1dd1dbec6094659 schema:issueNumber 3
    51 rdf:type schema:PublicationIssue
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1285003 schema:issn 0170-9739
    59 1431-5858
    60 schema:name Zeitschrift für Physik C Particles and Fields
    61 rdf:type schema:Periodical
    62 sg:person.014121444104.73 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
    63 schema:familyName Piette
    64 schema:givenName B.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
    66 rdf:type schema:Person
    67 sg:person.014640770123.34 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
    68 schema:familyName Zakrzewski
    69 schema:givenName W. J.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34
    71 rdf:type schema:Person
    72 sg:person.015677715153.97 schema:affiliation https://www.grid.ac/institutes/grid.55940.3d
    73 schema:familyName Tchrakian
    74 schema:givenName D. H.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97
    76 rdf:type schema:Person
    77 sg:pub.10.1007/3-540-54890-4_177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039554745
    78 https://doi.org/10.1007/3-540-54890-4_177
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01200112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026324737
    81 https://doi.org/10.1007/bf01200112
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1017/cbo9781139172059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098775173
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1088/0305-4470/23/8/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059071434
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.55940.3d schema:alternateName Dublin Institute For Advanced Studies
    88 schema:name Department of Mathematical Physics, St. Patrick College, Maynooth, Ireland
    89 STP-Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4, Ireland
    90 rdf:type schema:Organization
    91 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
    92 schema:name Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK
    93 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...