A class of two dimensional models with extended structure solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-09

AUTHORS

B. Piette, D. H. Tchrakian, W. J. Zakrzewski

ABSTRACT

We study some properties of a class of two-dimensional models which have infinite dimensional groups of symmetry which include both the Euclidean and Minkowskian groups. We show that all solutions of these models are self-dual and correspond to mappings of the 2 dimensional plane into itself which locally preserve the area. When treated as candidates for soliton-like structures we see that the structures are localised. In most cases the energy density of these structures has a power-like tail; in some cases, e.g. the modified sine-Gordon model, the localisation is exponential. More... »

PAGES

497-502

References to SciGraph publications

  • 1991. Interactions of solitons in (2+1) dimensions in NONLINEAR COHERENT STRUCTURES IN PHYSICS AND BIOLOGY
  • 1980-02. Local theory of solutions for the 0(2k+1) σ-model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01559470

    DOI

    http://dx.doi.org/10.1007/bf01559470

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008178320


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK", 
              "id": "http://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Piette", 
            "givenName": "B.", 
            "id": "sg:person.014121444104.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "STP-Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.55940.3d", 
              "name": [
                "Department of Mathematical Physics, St. Patrick College, Maynooth, Ireland", 
                "STP-Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tchrakian", 
            "givenName": "D. H.", 
            "id": "sg:person.015677715153.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK", 
              "id": "http://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakrzewski", 
            "givenName": "W. J.", 
            "id": "sg:person.014640770123.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-54890-4_177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039554745", 
              "https://doi.org/10.1007/3-540-54890-4_177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01200112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026324737", 
              "https://doi.org/10.1007/bf01200112"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-09", 
        "datePublishedReg": "1992-09-01", 
        "description": "We study some properties of a class of two-dimensional models which have infinite dimensional groups of symmetry which include both the Euclidean and Minkowskian groups. We show that all solutions of these models are self-dual and correspond to mappings of the 2 dimensional plane into itself which locally preserve the area. When treated as candidates for soliton-like structures we see that the structures are localised. In most cases the energy density of these structures has a power-like tail; in some cases, e.g. the modified sine-Gordon model, the localisation is exponential.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01559470", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285003", 
            "issn": [
              "0170-9739", 
              "1431-5858"
            ], 
            "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "keywords": [
          "sine-Gordon model", 
          "infinite dimensional group", 
          "power-like tail", 
          "dimensional groups", 
          "soliton-like structures", 
          "two-dimensional model", 
          "dimensional plane", 
          "dimensional model", 
          "class", 
          "solution", 
          "model", 
          "Euclidean", 
          "symmetry", 
          "cases", 
          "mapping", 
          "structure", 
          "structure solution", 
          "properties", 
          "plane", 
          "most cases", 
          "tail", 
          "energy density", 
          "density", 
          "area", 
          "candidates", 
          "group", 
          "localisation", 
          "Minkowskian groups", 
          "extended structure solutions"
        ], 
        "name": "A class of two dimensional models with extended structure solutions", 
        "pagination": "497-502", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008178320"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01559470"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01559470", 
          "https://app.dimensions.ai/details/publication/pub.1008178320"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_256.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01559470"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01559470'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      22 PREDICATES      57 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01559470 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N099a5659260c46d7b3f1e8adbe1702eb
    4 schema:citation sg:pub.10.1007/3-540-54890-4_177
    5 sg:pub.10.1007/bf01200112
    6 schema:datePublished 1992-09
    7 schema:datePublishedReg 1992-09-01
    8 schema:description We study some properties of a class of two-dimensional models which have infinite dimensional groups of symmetry which include both the Euclidean and Minkowskian groups. We show that all solutions of these models are self-dual and correspond to mappings of the 2 dimensional plane into itself which locally preserve the area. When treated as candidates for soliton-like structures we see that the structures are localised. In most cases the energy density of these structures has a power-like tail; in some cases, e.g. the modified sine-Gordon model, the localisation is exponential.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N1bb4ebb47b7e4f80ac33baa3387ecade
    13 N5dc12d7ffdec43af8b476489f4bae84f
    14 sg:journal.1285003
    15 schema:keywords Euclidean
    16 Minkowskian groups
    17 area
    18 candidates
    19 cases
    20 class
    21 density
    22 dimensional groups
    23 dimensional model
    24 dimensional plane
    25 energy density
    26 extended structure solutions
    27 group
    28 infinite dimensional group
    29 localisation
    30 mapping
    31 model
    32 most cases
    33 plane
    34 power-like tail
    35 properties
    36 sine-Gordon model
    37 soliton-like structures
    38 solution
    39 structure
    40 structure solution
    41 symmetry
    42 tail
    43 two-dimensional model
    44 schema:name A class of two dimensional models with extended structure solutions
    45 schema:pagination 497-502
    46 schema:productId Ne208b99ae974414a975cdc503d37f26e
    47 Nea71cb31e0d84b8ba0da586241e14b4c
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008178320
    49 https://doi.org/10.1007/bf01559470
    50 schema:sdDatePublished 2021-11-01T18:00
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N327a737fa5724ea3a652d9c05dc5a7f9
    53 schema:url https://doi.org/10.1007/bf01559470
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N099a5659260c46d7b3f1e8adbe1702eb rdf:first sg:person.014121444104.73
    58 rdf:rest Ne1b6a4190d104459a311d5129255820b
    59 N1bb4ebb47b7e4f80ac33baa3387ecade schema:issueNumber 3
    60 rdf:type schema:PublicationIssue
    61 N327a737fa5724ea3a652d9c05dc5a7f9 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N5dc12d7ffdec43af8b476489f4bae84f schema:volumeNumber 54
    64 rdf:type schema:PublicationVolume
    65 Ne1b6a4190d104459a311d5129255820b rdf:first sg:person.015677715153.97
    66 rdf:rest Ned8ed93a365f4ab5be90f6d42c82068a
    67 Ne208b99ae974414a975cdc503d37f26e schema:name dimensions_id
    68 schema:value pub.1008178320
    69 rdf:type schema:PropertyValue
    70 Nea71cb31e0d84b8ba0da586241e14b4c schema:name doi
    71 schema:value 10.1007/bf01559470
    72 rdf:type schema:PropertyValue
    73 Ned8ed93a365f4ab5be90f6d42c82068a rdf:first sg:person.014640770123.34
    74 rdf:rest rdf:nil
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1285003 schema:issn 0170-9739
    82 1431-5858
    83 schema:name Zeitschrift für Physik C Particles and Fields
    84 schema:publisher Springer Nature
    85 rdf:type schema:Periodical
    86 sg:person.014121444104.73 schema:affiliation grid-institutes:grid.8250.f
    87 schema:familyName Piette
    88 schema:givenName B.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
    90 rdf:type schema:Person
    91 sg:person.014640770123.34 schema:affiliation grid-institutes:grid.8250.f
    92 schema:familyName Zakrzewski
    93 schema:givenName W. J.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34
    95 rdf:type schema:Person
    96 sg:person.015677715153.97 schema:affiliation grid-institutes:grid.55940.3d
    97 schema:familyName Tchrakian
    98 schema:givenName D. H.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97
    100 rdf:type schema:Person
    101 sg:pub.10.1007/3-540-54890-4_177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039554745
    102 https://doi.org/10.1007/3-540-54890-4_177
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01200112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026324737
    105 https://doi.org/10.1007/bf01200112
    106 rdf:type schema:CreativeWork
    107 grid-institutes:grid.55940.3d schema:alternateName STP-Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4, Ireland
    108 schema:name Department of Mathematical Physics, St. Patrick College, Maynooth, Ireland
    109 STP-Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4, Ireland
    110 rdf:type schema:Organization
    111 grid-institutes:grid.8250.f schema:alternateName Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK
    112 schema:name Department of Mathematical Sciences, University of Durham, DH1 3LE, Durham, UK
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...