The basic equations of the dynamics of the continuous distribution of dislocations III. special problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1960-08

AUTHORS

E. F. Holländer

ABSTRACT

The basic equations of the dynamics of the continuous distribution of dislocations analogical to Maxwell equations are derived in a series of papers [I, II, III]. The analogy of the elastic and electromagnetic fields is analyzed. In part [III] some special problems are discussed, such as the density of the forces acting on the dislocations, the energy dissipation during the movement of dislocations, which is expressed by an equation analogical to Ohm's law. The equations derived in the previous parts in four-dimensional symbolics are considered in the three-dimensional differential and integral form. It is found that in special cases the relations become the known ones of elastodynamics, hydrodynamics and the static theory of the continuous distribution of dislocations. It is found that Kröner's method of integrating the equations of the dislocation field by means of so-called incompatibility tensors is analogical to the integration of the Maxwell equations by means of Hertz vectors. The analogy between the elastic dislocation field and the electromagnetic field is discussed in detail. More... »

PAGES

551-560

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01557282

DOI

http://dx.doi.org/10.1007/bf01557282

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023819190


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Welding Research Institute - Industrial Institute SR", 
          "id": "https://www.grid.ac/institutes/grid.438960.0", 
          "name": [
            "Welding Research Institute, Bratislava"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holl\u00e4nder", 
        "givenName": "E. F.", 
        "id": "sg:person.014556636623.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556636623.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01557357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000061223", 
          "https://doi.org/10.1007/bf01557357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01557357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000061223", 
          "https://doi.org/10.1007/bf01557357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01338623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022145586", 
          "https://doi.org/10.1007/bf01338623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1955.0171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029799761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01375082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032066782", 
          "https://doi.org/10.1007/bf01375082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01557274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032421079", 
          "https://doi.org/10.1007/bf01557274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01557274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032421079", 
          "https://doi.org/10.1007/bf01557274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01375259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035180505", 
          "https://doi.org/10.1007/bf01375259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(53)90054-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038655107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1956.0150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044478143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01669489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050494366", 
          "https://doi.org/10.1007/bf01669489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1298/62/2/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059090251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1298/62/5/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059090277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1298/63/3/302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059090393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-94719-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711334", 
          "https://doi.org/10.1007/978-3-642-94719-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-94719-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711334", 
          "https://doi.org/10.1007/978-3-642-94719-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1960-08", 
    "datePublishedReg": "1960-08-01", 
    "description": "The basic equations of the dynamics of the continuous distribution of dislocations analogical to Maxwell equations are derived in a series of papers [I, II, III]. The analogy of the elastic and electromagnetic fields is analyzed. In part [III] some special problems are discussed, such as the density of the forces acting on the dislocations, the energy dissipation during the movement of dislocations, which is expressed by an equation analogical to Ohm's law. The equations derived in the previous parts in four-dimensional symbolics are considered in the three-dimensional differential and integral form. It is found that in special cases the relations become the known ones of elastodynamics, hydrodynamics and the static theory of the continuous distribution of dislocations. It is found that Kr\u00f6ner's method of integrating the equations of the dislocation field by means of so-called incompatibility tensors is analogical to the integration of the Maxwell equations by means of Hertz vectors. The analogy between the elastic dislocation field and the electromagnetic field is discussed in detail.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01557282", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297212", 
        "issn": [
          "0011-4626", 
          "1572-9486"
        ], 
        "name": "Czechoslovak Journal of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "The basic equations of the dynamics of the continuous distribution of dislocations III. special problems", 
    "pagination": "551-560", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "717a869e743de613bb58ef33f96948ab7f13c041447584e783f23d5457cde00f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01557282"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023819190"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01557282", 
      "https://app.dimensions.ai/details/publication/pub.1023819190"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01557282"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01557282'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01557282'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01557282'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01557282'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01557282 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nabf206ee6613499ab5675ca0fd5da9e8
4 schema:citation sg:pub.10.1007/978-3-642-94719-3
5 sg:pub.10.1007/bf01338623
6 sg:pub.10.1007/bf01375082
7 sg:pub.10.1007/bf01375259
8 sg:pub.10.1007/bf01557274
9 sg:pub.10.1007/bf01557357
10 sg:pub.10.1007/bf01669489
11 https://doi.org/10.1016/0001-6160(53)90054-6
12 https://doi.org/10.1088/0370-1298/62/2/307
13 https://doi.org/10.1088/0370-1298/62/5/307
14 https://doi.org/10.1088/0370-1298/63/3/302
15 https://doi.org/10.1098/rspa.1955.0171
16 https://doi.org/10.1098/rspa.1956.0150
17 https://doi.org/10.1103/physrev.80.436
18 schema:datePublished 1960-08
19 schema:datePublishedReg 1960-08-01
20 schema:description The basic equations of the dynamics of the continuous distribution of dislocations analogical to Maxwell equations are derived in a series of papers [I, II, III]. The analogy of the elastic and electromagnetic fields is analyzed. In part [III] some special problems are discussed, such as the density of the forces acting on the dislocations, the energy dissipation during the movement of dislocations, which is expressed by an equation analogical to Ohm's law. The equations derived in the previous parts in four-dimensional symbolics are considered in the three-dimensional differential and integral form. It is found that in special cases the relations become the known ones of elastodynamics, hydrodynamics and the static theory of the continuous distribution of dislocations. It is found that Kröner's method of integrating the equations of the dislocation field by means of so-called incompatibility tensors is analogical to the integration of the Maxwell equations by means of Hertz vectors. The analogy between the elastic dislocation field and the electromagnetic field is discussed in detail.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N50ea635241804e59acd265e617fd292f
25 Ne5527e5286c64e6c923946cfadb8c2d8
26 sg:journal.1297212
27 schema:name The basic equations of the dynamics of the continuous distribution of dislocations III. special problems
28 schema:pagination 551-560
29 schema:productId Nc7cfc0a45f454af2a7d0a68b5a506d98
30 Nc9e81431eec44b7fa5f2efb37a4e3e66
31 Nd5991760fb1648c2a8c39858863319bc
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023819190
33 https://doi.org/10.1007/bf01557282
34 schema:sdDatePublished 2019-04-11T13:29
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nc880c427cf4345f493d7592cabf2491f
37 schema:url http://link.springer.com/10.1007/BF01557282
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N50ea635241804e59acd265e617fd292f schema:issueNumber 8
42 rdf:type schema:PublicationIssue
43 Nabf206ee6613499ab5675ca0fd5da9e8 rdf:first sg:person.014556636623.73
44 rdf:rest rdf:nil
45 Nc7cfc0a45f454af2a7d0a68b5a506d98 schema:name dimensions_id
46 schema:value pub.1023819190
47 rdf:type schema:PropertyValue
48 Nc880c427cf4345f493d7592cabf2491f schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nc9e81431eec44b7fa5f2efb37a4e3e66 schema:name readcube_id
51 schema:value 717a869e743de613bb58ef33f96948ab7f13c041447584e783f23d5457cde00f
52 rdf:type schema:PropertyValue
53 Nd5991760fb1648c2a8c39858863319bc schema:name doi
54 schema:value 10.1007/bf01557282
55 rdf:type schema:PropertyValue
56 Ne5527e5286c64e6c923946cfadb8c2d8 schema:volumeNumber 10
57 rdf:type schema:PublicationVolume
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1297212 schema:issn 0011-4626
65 1572-9486
66 schema:name Czechoslovak Journal of Physics
67 rdf:type schema:Periodical
68 sg:person.014556636623.73 schema:affiliation https://www.grid.ac/institutes/grid.438960.0
69 schema:familyName Holländer
70 schema:givenName E. F.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556636623.73
72 rdf:type schema:Person
73 sg:pub.10.1007/978-3-642-94719-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711334
74 https://doi.org/10.1007/978-3-642-94719-3
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01338623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022145586
77 https://doi.org/10.1007/bf01338623
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01375082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032066782
80 https://doi.org/10.1007/bf01375082
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01375259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035180505
83 https://doi.org/10.1007/bf01375259
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01557274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032421079
86 https://doi.org/10.1007/bf01557274
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01557357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000061223
89 https://doi.org/10.1007/bf01557357
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01669489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050494366
92 https://doi.org/10.1007/bf01669489
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0001-6160(53)90054-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038655107
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/0370-1298/62/2/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090251
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0370-1298/62/5/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090277
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/0370-1298/63/3/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090393
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1098/rspa.1955.0171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029799761
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1098/rspa.1956.0150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044478143
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrev.80.436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456989
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.438960.0 schema:alternateName Welding Research Institute - Industrial Institute SR
109 schema:name Welding Research Institute, Bratislava
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...