The basic equations of the dynamics of the continuous distribution of dislocations I. General theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1960-06

AUTHORS

E. F. Holländer

ABSTRACT

The basic equations of the dynamics of the continuous distribution of dislocations analogical to Maxwell's equations are derived in a series of papers I, II, III. The analogy of the elastic and electromagnetic fields is analyzed. In part I the basic equations of the continuous distribution of dislocations are derived for the dynamic case (especially for small deformations and for the Poisson ratio equal to zero in a continuum, infinite with respect to space and time, from the variational problem by means of the formal apparatus of the special theory of relativity. More... »

PAGES

409-418

References to SciGraph publications

  • 1949-05. Über das Spannungsfeld einer Versetzung in ZEITSCHRIFT FÜR PHYSIK
  • 1958. Kontinuumstheorie der Versetzungen und Eigenspannungen in NONE
  • 1954-04. Die Spannungsfunktionen der dreidimensionalen isotropen Elastizitätstheorie in ZEITSCHRIFT FÜR PHYSIK
  • 1956-08. Kontinuumstheorie der Versetzungen in ZEITSCHRIFT FÜR PHYSIK
  • 1955. Theorie der Gitterfehlstellen in KRISTALLPHYSIK I / CRYSTAL PHYSICS I
  • 1955-08. Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen in ZEITSCHRIFT FÜR PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01557274

    DOI

    http://dx.doi.org/10.1007/bf01557274

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032421079


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Welding Research Institute - Industrial Institute SR", 
              "id": "https://www.grid.ac/institutes/grid.438960.0", 
              "name": [
                "Welding Research Institute, Bratislava"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holl\u00e4nder", 
            "givenName": "E. F.", 
            "id": "sg:person.014556636623.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556636623.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01338623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022145586", 
              "https://doi.org/10.1007/bf01338623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1955.0171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029799761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01375082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032066782", 
              "https://doi.org/10.1007/bf01375082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01375259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035180505", 
              "https://doi.org/10.1007/bf01375259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-6160(53)90054-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038655107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1956.0150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044478143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01669489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050494366", 
              "https://doi.org/10.1007/bf01669489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0370-1298/62/2/307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059090251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0370-1298/62/5/307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059090277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0370-1298/63/3/302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059090393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.80.436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060456989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.80.436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060456989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-45827-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089810417", 
              "https://doi.org/10.1007/978-3-642-45827-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-94719-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109711334", 
              "https://doi.org/10.1007/978-3-642-94719-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-94719-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109711334", 
              "https://doi.org/10.1007/978-3-642-94719-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1960-06", 
        "datePublishedReg": "1960-06-01", 
        "description": "The basic equations of the dynamics of the continuous distribution of dislocations analogical to Maxwell's equations are derived in a series of papers I, II, III. The analogy of the elastic and electromagnetic fields is analyzed. In part I the basic equations of the continuous distribution of dislocations are derived for the dynamic case (especially for small deformations and for the Poisson ratio equal to zero in a continuum, infinite with respect to space and time, from the variational problem by means of the formal apparatus of the special theory of relativity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01557274", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297212", 
            "issn": [
              "0011-4626", 
              "1572-9486"
            ], 
            "name": "Czechoslovak Journal of Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "The basic equations of the dynamics of the continuous distribution of dislocations I. General theory", 
        "pagination": "409-418", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9a731ec533c4c61f101c554178e056e1361f3bd20fd79ba85753a12dbbc3aacf"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01557274"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032421079"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01557274", 
          "https://app.dimensions.ai/details/publication/pub.1032421079"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01557274"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01557274'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01557274'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01557274'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01557274'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01557274 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nfc5e34dbdcac4708873273adf0292294
    4 schema:citation sg:pub.10.1007/978-3-642-45827-9_4
    5 sg:pub.10.1007/978-3-642-94719-3
    6 sg:pub.10.1007/bf01338623
    7 sg:pub.10.1007/bf01375082
    8 sg:pub.10.1007/bf01375259
    9 sg:pub.10.1007/bf01669489
    10 https://doi.org/10.1016/0001-6160(53)90054-6
    11 https://doi.org/10.1088/0370-1298/62/2/307
    12 https://doi.org/10.1088/0370-1298/62/5/307
    13 https://doi.org/10.1088/0370-1298/63/3/302
    14 https://doi.org/10.1098/rspa.1955.0171
    15 https://doi.org/10.1098/rspa.1956.0150
    16 https://doi.org/10.1103/physrev.80.436
    17 schema:datePublished 1960-06
    18 schema:datePublishedReg 1960-06-01
    19 schema:description The basic equations of the dynamics of the continuous distribution of dislocations analogical to Maxwell's equations are derived in a series of papers I, II, III. The analogy of the elastic and electromagnetic fields is analyzed. In part I the basic equations of the continuous distribution of dislocations are derived for the dynamic case (especially for small deformations and for the Poisson ratio equal to zero in a continuum, infinite with respect to space and time, from the variational problem by means of the formal apparatus of the special theory of relativity.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N2079c5da1e464733a4d64dd36e9f799c
    24 Na3f6aa98daae4a7b80663aea39b67026
    25 sg:journal.1297212
    26 schema:name The basic equations of the dynamics of the continuous distribution of dislocations I. General theory
    27 schema:pagination 409-418
    28 schema:productId N5b45f44c100e47f4827b9e49f503cf30
    29 N8c456809ef9949f5a19f667aa4c447ad
    30 Nf7eed0ac8e4742debfc0c678dd5172d0
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032421079
    32 https://doi.org/10.1007/bf01557274
    33 schema:sdDatePublished 2019-04-11T13:30
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N68249efc761c4e4d93f4725b7fd120d7
    36 schema:url http://link.springer.com/10.1007/BF01557274
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N2079c5da1e464733a4d64dd36e9f799c schema:volumeNumber 10
    41 rdf:type schema:PublicationVolume
    42 N5b45f44c100e47f4827b9e49f503cf30 schema:name readcube_id
    43 schema:value 9a731ec533c4c61f101c554178e056e1361f3bd20fd79ba85753a12dbbc3aacf
    44 rdf:type schema:PropertyValue
    45 N68249efc761c4e4d93f4725b7fd120d7 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N8c456809ef9949f5a19f667aa4c447ad schema:name dimensions_id
    48 schema:value pub.1032421079
    49 rdf:type schema:PropertyValue
    50 Na3f6aa98daae4a7b80663aea39b67026 schema:issueNumber 6
    51 rdf:type schema:PublicationIssue
    52 Nf7eed0ac8e4742debfc0c678dd5172d0 schema:name doi
    53 schema:value 10.1007/bf01557274
    54 rdf:type schema:PropertyValue
    55 Nfc5e34dbdcac4708873273adf0292294 rdf:first sg:person.014556636623.73
    56 rdf:rest rdf:nil
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Pure Mathematics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1297212 schema:issn 0011-4626
    64 1572-9486
    65 schema:name Czechoslovak Journal of Physics
    66 rdf:type schema:Periodical
    67 sg:person.014556636623.73 schema:affiliation https://www.grid.ac/institutes/grid.438960.0
    68 schema:familyName Holländer
    69 schema:givenName E. F.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556636623.73
    71 rdf:type schema:Person
    72 sg:pub.10.1007/978-3-642-45827-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089810417
    73 https://doi.org/10.1007/978-3-642-45827-9_4
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/978-3-642-94719-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711334
    76 https://doi.org/10.1007/978-3-642-94719-3
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01338623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022145586
    79 https://doi.org/10.1007/bf01338623
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01375082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032066782
    82 https://doi.org/10.1007/bf01375082
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01375259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035180505
    85 https://doi.org/10.1007/bf01375259
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01669489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050494366
    88 https://doi.org/10.1007/bf01669489
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/0001-6160(53)90054-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038655107
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1088/0370-1298/62/2/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090251
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1088/0370-1298/62/5/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090277
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1088/0370-1298/63/3/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090393
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1098/rspa.1955.0171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029799761
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1098/rspa.1956.0150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044478143
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrev.80.436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456989
    103 rdf:type schema:CreativeWork
    104 https://www.grid.ac/institutes/grid.438960.0 schema:alternateName Welding Research Institute - Industrial Institute SR
    105 schema:name Welding Research Institute, Bratislava
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...