Elliptic-type solutions to the scale invariant Yang-Mills and sigma-model hierarchies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

G. M. O'Brien, D. H. Tchrakian, H. J. W. Müller-Kirsten

ABSTRACT

We outline the construction of non-self-dual elliptic solutions by relating the spherically symmetric subsystem of the (scale invariant) Yang-Mills and sigmamodel hierarchies to the hierarchies ofφ4 and Sine-Gordon models in one dimension respectively. The construction is carried out explicitly for the usual Yang-Mills model on ℝ4, and the first two sigma-models on ℝ2 and ℝ4. The solution to the first member of the Yang-Mills hierarchy is related to elliptic solutions found previously. More... »

PAGES

513-516

References to SciGraph publications

  • 1971. Handbook of Elliptic Integrals for Engineers and Scientists in NONE
  • 1987-04. Conformal properties of the BPST instantons of the generalised Yang-Mills system in LETTERS IN MATHEMATICAL PHYSICS
  • 1977-02. On symmetric gauge fields in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01556379

    DOI

    http://dx.doi.org/10.1007/bf01556379

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010198784


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.55940.3d", 
              "name": [
                "Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany", 
                "School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O'Brien", 
            "givenName": "G. M.", 
            "id": "sg:person.014107345612.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014107345612.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Physics, St. Patrick's College, Maynooth, Ireland", 
              "id": "http://www.grid.ac/institutes/grid.95004.38", 
              "name": [
                "Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany", 
                "School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland", 
                "Department of Mathematical Physics, St. Patrick's College, Maynooth, Ireland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tchrakian", 
            "givenName": "D. H.", 
            "id": "sg:person.015677715153.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7645.0", 
              "name": [
                "Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller-Kirsten", 
            "givenName": "H. J. W.", 
            "id": "sg:person.015770013454.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770013454.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00423448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013572934", 
              "https://doi.org/10.1007/bf00423448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65138-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029360671", 
              "https://doi.org/10.1007/978-3-642-65138-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01611118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049579228", 
              "https://doi.org/10.1007/bf01611118"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-09", 
        "datePublishedReg": "1995-09-01", 
        "description": "We outline the construction of non-self-dual elliptic solutions by relating the spherically symmetric subsystem of the (scale invariant) Yang-Mills and sigmamodel hierarchies to the hierarchies of\u03c64 and Sine-Gordon models in one dimension respectively. The construction is carried out explicitly for the usual Yang-Mills model on \u211d4, and the first two sigma-models on \u211d2 and \u211d4. The solution to the first member of the Yang-Mills hierarchy is related to elliptic solutions found previously.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01556379", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285003", 
            "issn": [
              "0170-9739", 
              "1431-5858"
            ], 
            "name": "Zeitschrift f\u00fcr Physik C Particles and Fields", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "66"
          }
        ], 
        "keywords": [
          "Yang-Mills", 
          "elliptic solutions", 
          "Yang-Mills hierarchy", 
          "Yang-Mills model", 
          "sine-Gordon model", 
          "symmetric subsystems", 
          "solution", 
          "subsystems", 
          "hierarchy", 
          "model", 
          "construction", 
          "dimensions", 
          "first member", 
          "members", 
          "dual elliptic solutions", 
          "sigmamodel hierarchies", 
          "hierarchies of\u03c64", 
          "of\u03c64", 
          "usual Yang-Mills model", 
          "Elliptic-type solutions", 
          "scale invariant Yang-Mills", 
          "invariant Yang-Mills", 
          "sigma-model hierarchies"
        ], 
        "name": "Elliptic-type solutions to the scale invariant Yang-Mills and sigma-model hierarchies", 
        "pagination": "513-516", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010198784"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01556379"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01556379", 
          "https://app.dimensions.ai/details/publication/pub.1010198784"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_287.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01556379"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01556379'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01556379'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01556379'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01556379'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      22 PREDICATES      52 URIs      41 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01556379 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Neb0d3f51f6d44b5ab506f737aaabf1a2
    4 schema:citation sg:pub.10.1007/978-3-642-65138-0
    5 sg:pub.10.1007/bf00423448
    6 sg:pub.10.1007/bf01611118
    7 schema:datePublished 1995-09
    8 schema:datePublishedReg 1995-09-01
    9 schema:description We outline the construction of non-self-dual elliptic solutions by relating the spherically symmetric subsystem of the (scale invariant) Yang-Mills and sigmamodel hierarchies to the hierarchies ofφ4 and Sine-Gordon models in one dimension respectively. The construction is carried out explicitly for the usual Yang-Mills model on ℝ4, and the first two sigma-models on ℝ2 and ℝ4. The solution to the first member of the Yang-Mills hierarchy is related to elliptic solutions found previously.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N228c41f4c7904be8b7b6f12c2a63e1a4
    14 N63b4590924d34f0aa05b12c2a0927a2c
    15 sg:journal.1285003
    16 schema:keywords Elliptic-type solutions
    17 Yang-Mills
    18 Yang-Mills hierarchy
    19 Yang-Mills model
    20 construction
    21 dimensions
    22 dual elliptic solutions
    23 elliptic solutions
    24 first member
    25 hierarchies ofφ4
    26 hierarchy
    27 invariant Yang-Mills
    28 members
    29 model
    30 ofφ4
    31 scale invariant Yang-Mills
    32 sigma-model hierarchies
    33 sigmamodel hierarchies
    34 sine-Gordon model
    35 solution
    36 subsystems
    37 symmetric subsystems
    38 usual Yang-Mills model
    39 schema:name Elliptic-type solutions to the scale invariant Yang-Mills and sigma-model hierarchies
    40 schema:pagination 513-516
    41 schema:productId N1a62dde8dcec47b8b40ea1b6c6c67f19
    42 N8da518e496964300a54d5898735401c3
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010198784
    44 https://doi.org/10.1007/bf01556379
    45 schema:sdDatePublished 2022-01-01T18:08
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N930e5c80098f490f81a5735c1dcfd09d
    48 schema:url https://doi.org/10.1007/bf01556379
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1a62dde8dcec47b8b40ea1b6c6c67f19 schema:name dimensions_id
    53 schema:value pub.1010198784
    54 rdf:type schema:PropertyValue
    55 N228c41f4c7904be8b7b6f12c2a63e1a4 schema:issueNumber 3
    56 rdf:type schema:PublicationIssue
    57 N63b4590924d34f0aa05b12c2a0927a2c schema:volumeNumber 66
    58 rdf:type schema:PublicationVolume
    59 N8b01e9ce7da04f2b8edbe610fba86b2e rdf:first sg:person.015677715153.97
    60 rdf:rest Nf69776cc066d4e179df701d28dc402d6
    61 N8da518e496964300a54d5898735401c3 schema:name doi
    62 schema:value 10.1007/bf01556379
    63 rdf:type schema:PropertyValue
    64 N930e5c80098f490f81a5735c1dcfd09d schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 Neb0d3f51f6d44b5ab506f737aaabf1a2 rdf:first sg:person.014107345612.15
    67 rdf:rest N8b01e9ce7da04f2b8edbe610fba86b2e
    68 Nf69776cc066d4e179df701d28dc402d6 rdf:first sg:person.015770013454.82
    69 rdf:rest rdf:nil
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Applied Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1285003 schema:issn 0170-9739
    77 1431-5858
    78 schema:name Zeitschrift für Physik C Particles and Fields
    79 schema:publisher Springer Nature
    80 rdf:type schema:Periodical
    81 sg:person.014107345612.15 schema:affiliation grid-institutes:grid.55940.3d
    82 schema:familyName O'Brien
    83 schema:givenName G. M.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014107345612.15
    85 rdf:type schema:Person
    86 sg:person.015677715153.97 schema:affiliation grid-institutes:grid.95004.38
    87 schema:familyName Tchrakian
    88 schema:givenName D. H.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97
    90 rdf:type schema:Person
    91 sg:person.015770013454.82 schema:affiliation grid-institutes:grid.7645.0
    92 schema:familyName Müller-Kirsten
    93 schema:givenName H. J. W.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770013454.82
    95 rdf:type schema:Person
    96 sg:pub.10.1007/978-3-642-65138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360671
    97 https://doi.org/10.1007/978-3-642-65138-0
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf00423448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013572934
    100 https://doi.org/10.1007/bf00423448
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01611118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049579228
    103 https://doi.org/10.1007/bf01611118
    104 rdf:type schema:CreativeWork
    105 grid-institutes:grid.55940.3d schema:alternateName School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
    106 schema:name Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany
    107 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
    108 rdf:type schema:Organization
    109 grid-institutes:grid.7645.0 schema:alternateName Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany
    110 schema:name Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany
    111 rdf:type schema:Organization
    112 grid-institutes:grid.95004.38 schema:alternateName Department of Mathematical Physics, St. Patrick's College, Maynooth, Ireland
    113 schema:name Department of Mathematical Physics, St. Patrick's College, Maynooth, Ireland
    114 Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany
    115 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...