Unbiased estimation of flood risk with the GEV distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-09

AUTHORS

N. W. Arnell

ABSTRACT

Conventional flood frequency analysis is concerned with providing an unbiased estimate of the magnitude of the design flow exceeded with the probabilityp, but sampling uncertainties imply that such estimates will, on average, be exceeded more frequently. An alternative approach is therefore, to derive an estimator which gives an unbiased estimate of flow risk: the difference between the two magnitudes reflects uncertainties in parameter estimation. An empirical procedure has been developed to estimate the mean true exceedance probabilities of conventional estimates made using a GEV distribution fitted by probability weighted moments, and adjustment factors have been determined to enable the estimation of flood magnitudes exceeded with, on average, the desired probability. More... »

PAGES

201-212

References to SciGraph publications

  • 1987. The Bayesian Framework for Inference in Flood Frequency Analysis in APPLICATION OF FREQUENCY AND RISK IN WATER RESOURCES
  • 1987. Project Risk Considering Samplng Uncertainties and a Finite Project Operation Period in APPLICATION OF FREQUENCY AND RISK IN WATER RESOURCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01550842

    DOI

    http://dx.doi.org/10.1007/bf01550842

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034324010


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Natural Environment Research Council", 
              "id": "https://www.grid.ac/institutes/grid.8682.4", 
              "name": [
                "Institute of Hydrology, 0X10 8BB, Wallingford, Oxon, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arnell", 
            "givenName": "N. W.", 
            "id": "sg:person.0743535320.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743535320.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1029/jz065i007p02143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003069366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/tr038i004p00519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007470526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr011i004p00533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008625729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr011i006p00839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008751487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/wr019i002p00511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015085828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.49708134804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020340246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-3955-4_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028577681", 
              "https://doi.org/10.1007/978-94-009-3955-4_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-3955-4_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049199160", 
              "https://doi.org/10.1007/978-94-009-3955-4_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1985.10488049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058285781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1953.10483493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/67.3.723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059419028"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-09", 
        "datePublishedReg": "1988-09-01", 
        "description": "Conventional flood frequency analysis is concerned with providing an unbiased estimate of the magnitude of the design flow exceeded with the probabilityp, but sampling uncertainties imply that such estimates will, on average, be exceeded more frequently. An alternative approach is therefore, to derive an estimator which gives an unbiased estimate of flow risk: the difference between the two magnitudes reflects uncertainties in parameter estimation. An empirical procedure has been developed to estimate the mean true exceedance probabilities of conventional estimates made using a GEV distribution fitted by probability weighted moments, and adjustment factors have been determined to enable the estimation of flood magnitudes exceeded with, on average, the desired probability.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01550842", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1225521", 
            "issn": [
              "0931-1955", 
              "1435-151X"
            ], 
            "name": "Stochastic Hydrology and Hydraulics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Unbiased estimation of flood risk with the GEV distribution", 
        "pagination": "201-212", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a3815cb0dbe0bd34400e2b68b77d0ecf7c16983667720ca749ba3dc195fb34de"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01550842"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034324010"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01550842", 
          "https://app.dimensions.ai/details/publication/pub.1034324010"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01550842"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01550842'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01550842'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01550842'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01550842'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01550842 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N1395bfc6f4424291b9bc081431aa9987
    4 schema:citation sg:pub.10.1007/978-94-009-3955-4_23
    5 sg:pub.10.1007/978-94-009-3955-4_4
    6 https://doi.org/10.1002/qj.49708134804
    7 https://doi.org/10.1029/jz065i007p02143
    8 https://doi.org/10.1029/tr038i004p00519
    9 https://doi.org/10.1029/wr011i004p00533
    10 https://doi.org/10.1029/wr011i006p00839
    11 https://doi.org/10.1029/wr019i002p00511
    12 https://doi.org/10.1080/00401706.1985.10488049
    13 https://doi.org/10.1080/01621459.1953.10483493
    14 https://doi.org/10.1093/biomet/67.3.723
    15 schema:datePublished 1988-09
    16 schema:datePublishedReg 1988-09-01
    17 schema:description Conventional flood frequency analysis is concerned with providing an unbiased estimate of the magnitude of the design flow exceeded with the probabilityp, but sampling uncertainties imply that such estimates will, on average, be exceeded more frequently. An alternative approach is therefore, to derive an estimator which gives an unbiased estimate of flow risk: the difference between the two magnitudes reflects uncertainties in parameter estimation. An empirical procedure has been developed to estimate the mean true exceedance probabilities of conventional estimates made using a GEV distribution fitted by probability weighted moments, and adjustment factors have been determined to enable the estimation of flood magnitudes exceeded with, on average, the desired probability.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N41e03717bb6046b58c67e6e87617083e
    22 Nc2285d98e2c2495b807bc0c72a038b85
    23 sg:journal.1225521
    24 schema:name Unbiased estimation of flood risk with the GEV distribution
    25 schema:pagination 201-212
    26 schema:productId N2ec5c948cd814953a9ac22df91c2ba5d
    27 Nb63f334974c14f8f98c9dfdea0a0576b
    28 Nc1f950ecb53841e7bcb54dac04d348e8
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034324010
    30 https://doi.org/10.1007/bf01550842
    31 schema:sdDatePublished 2019-04-11T13:29
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N787abee837b44d79982db939e5ca0bac
    34 schema:url http://link.springer.com/10.1007/BF01550842
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N1395bfc6f4424291b9bc081431aa9987 rdf:first sg:person.0743535320.29
    39 rdf:rest rdf:nil
    40 N2ec5c948cd814953a9ac22df91c2ba5d schema:name readcube_id
    41 schema:value a3815cb0dbe0bd34400e2b68b77d0ecf7c16983667720ca749ba3dc195fb34de
    42 rdf:type schema:PropertyValue
    43 N41e03717bb6046b58c67e6e87617083e schema:issueNumber 3
    44 rdf:type schema:PublicationIssue
    45 N787abee837b44d79982db939e5ca0bac schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Nb63f334974c14f8f98c9dfdea0a0576b schema:name dimensions_id
    48 schema:value pub.1034324010
    49 rdf:type schema:PropertyValue
    50 Nc1f950ecb53841e7bcb54dac04d348e8 schema:name doi
    51 schema:value 10.1007/bf01550842
    52 rdf:type schema:PropertyValue
    53 Nc2285d98e2c2495b807bc0c72a038b85 schema:volumeNumber 2
    54 rdf:type schema:PublicationVolume
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Statistics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1225521 schema:issn 0931-1955
    62 1435-151X
    63 schema:name Stochastic Hydrology and Hydraulics
    64 rdf:type schema:Periodical
    65 sg:person.0743535320.29 schema:affiliation https://www.grid.ac/institutes/grid.8682.4
    66 schema:familyName Arnell
    67 schema:givenName N. W.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743535320.29
    69 rdf:type schema:Person
    70 sg:pub.10.1007/978-94-009-3955-4_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028577681
    71 https://doi.org/10.1007/978-94-009-3955-4_23
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/978-94-009-3955-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049199160
    74 https://doi.org/10.1007/978-94-009-3955-4_4
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1002/qj.49708134804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020340246
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1029/jz065i007p02143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003069366
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1029/tr038i004p00519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007470526
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1029/wr011i004p00533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008625729
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1029/wr011i006p00839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008751487
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1029/wr019i002p00511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015085828
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1080/00401706.1985.10488049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058285781
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1080/01621459.1953.10483493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299098
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1093/biomet/67.3.723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419028
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.8682.4 schema:alternateName Natural Environment Research Council
    95 schema:name Institute of Hydrology, 0X10 8BB, Wallingford, Oxon, UK
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...