1989-12
AUTHORS ABSTRACTThe nuclear mass number dependence of inclusive spectra of secondaries with different quantum numbers in the projectile fragmentation region is analysed. We note that in models with topological pomeron, all the particle spectra fall into two main categories. The first one comprises particles which have a common “valence” quark with the projectile, the second one comprises all the other particles built of “sea” quarks. Thus, in the parameterization\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\frac{{d\sigma }}{{dx}} \propto A^{\alpha (x)} $$ \end{document} the spectra of all “valence” hadrons (p, n, Λ, π+,0,−,K+, ... in thepA-interaction) atx→1 can be characterized by the single exponent αυ =α(x≊1) which differs slightly from αs characterizing the spectra of “sea” hadrons (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar p, \bar \Lambda $$ \end{document},K−, ... forpA-interactions). This observation is essentially modelindependent and follows only from the topological structure of the pomeron and Gribov's space-time picture of soft hadronic interactions. Deviations from universality due to preasymptotic corrections and coherent particle production processes are estimated. More... »
PAGES665-671
http://scigraph.springernature.com/pub.10.1007/bf01549088
DOIhttp://dx.doi.org/10.1007/bf01549088
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049467443
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Theoretical and Experimental Physics, SU-117259, Moscow, USSR",
"id": "http://www.grid.ac/institutes/grid.21626.31",
"name": [
"Institute of Theoretical and Experimental Physics, SU-117259, Moscow, USSR"
],
"type": "Organization"
},
"familyName": "Zoller",
"givenName": "V. R.",
"id": "sg:person.07653611431.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01557469",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029075607",
"https://doi.org/10.1007/bf01557469"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01414185",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049784244",
"https://doi.org/10.1007/bf01414185"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01566921",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017587612",
"https://doi.org/10.1007/bf01566921"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01560688",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010933912",
"https://doi.org/10.1007/bf01560688"
],
"type": "CreativeWork"
}
],
"datePublished": "1989-12",
"datePublishedReg": "1989-12-01",
"description": "The nuclear mass number dependence of inclusive spectra of secondaries with different quantum numbers in the projectile fragmentation region is analysed. We note that in models with topological pomeron, all the particle spectra fall into two main categories. The first one comprises particles which have a common \u201cvalence\u201d quark with the projectile, the second one comprises all the other particles built of \u201csea\u201d quarks. Thus, in the parameterization\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$x\\frac{{d\\sigma }}{{dx}} \\propto A^{\\alpha (x)} $$\n\\end{document} the spectra of all \u201cvalence\u201d hadrons (p, n, \u039b, \u03c0+,0,\u2212,K+, ... in thepA-interaction) atx\u21921 can be characterized by the single exponent \u03b1\u03c5 =\u03b1(x\u224a1) which differs slightly from \u03b1s characterizing the spectra of \u201csea\u201d hadrons (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\bar p, \\bar \\Lambda $$\n\\end{document},K\u2212, ... forpA-interactions). This observation is essentially modelindependent and follows only from the topological structure of the pomeron and Gribov's space-time picture of soft hadronic interactions. Deviations from universality due to preasymptotic corrections and coherent particle production processes are estimated.",
"genre": "article",
"id": "sg:pub.10.1007/bf01549088",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1285003",
"issn": [
"0170-9739",
"1431-5858"
],
"name": "Zeitschrift f\u00fcr Physik C Particles and Fields",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "44"
}
],
"keywords": [
"space-time picture",
"nuclear mass number dependence",
"mass number dependence",
"different quantum numbers",
"projectile fragmentation region",
"soft hadronic interactions",
"particle production process",
"hadronic interactions",
"quantum numbers",
"particle spectra",
"inclusive spectra",
"fragmentation region",
"hadrons",
"number dependence",
"quarks",
"preasymptotic corrections",
"spectra",
"Pomeron",
"particles",
"projectile",
"valence",
"\u03b1s",
"topological structure",
"dependence",
"\u03b1\u03c5",
"second one",
"correction",
"universality",
"structure",
"Secondary",
"interaction",
"picture",
"deviation",
"region",
"one",
"model",
"process",
"production process",
"number",
"Sea",
"main categories",
"categories",
"observations"
],
"name": "Topological pomeron andA-universality",
"pagination": "665-671",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049467443"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01549088"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01549088",
"https://app.dimensions.ai/details/publication/pub.1049467443"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:18",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_197.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01549088"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01549088'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01549088'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01549088'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01549088'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
22 PREDICATES
73 URIs
61 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01549088 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N74a0a680c916435ca1ecd88464eba79e |
4 | ″ | schema:citation | sg:pub.10.1007/bf01414185 |
5 | ″ | ″ | sg:pub.10.1007/bf01557469 |
6 | ″ | ″ | sg:pub.10.1007/bf01560688 |
7 | ″ | ″ | sg:pub.10.1007/bf01566921 |
8 | ″ | schema:datePublished | 1989-12 |
9 | ″ | schema:datePublishedReg | 1989-12-01 |
10 | ″ | schema:description | The nuclear mass number dependence of inclusive spectra of secondaries with different quantum numbers in the projectile fragmentation region is analysed. We note that in models with topological pomeron, all the particle spectra fall into two main categories. The first one comprises particles which have a common “valence” quark with the projectile, the second one comprises all the other particles built of “sea” quarks. Thus, in the parameterization\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\frac{{d\sigma }}{{dx}} \propto A^{\alpha (x)} $$ \end{document} the spectra of all “valence” hadrons (p, n, Λ, π+,0,−,K+, ... in thepA-interaction) atx→1 can be characterized by the single exponent αυ =α(x≊1) which differs slightly from αs characterizing the spectra of “sea” hadrons (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar p, \bar \Lambda $$ \end{document},K−, ... forpA-interactions). This observation is essentially modelindependent and follows only from the topological structure of the pomeron and Gribov's space-time picture of soft hadronic interactions. Deviations from universality due to preasymptotic corrections and coherent particle production processes are estimated. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N8ee44e1f7bfd43dcbf9dc6b74e88ee24 |
15 | ″ | ″ | Ncd9b33b87960427c913262ad7e95ee7d |
16 | ″ | ″ | sg:journal.1285003 |
17 | ″ | schema:keywords | Pomeron |
18 | ″ | ″ | Sea |
19 | ″ | ″ | Secondary |
20 | ″ | ″ | categories |
21 | ″ | ″ | correction |
22 | ″ | ″ | dependence |
23 | ″ | ″ | deviation |
24 | ″ | ″ | different quantum numbers |
25 | ″ | ″ | fragmentation region |
26 | ″ | ″ | hadronic interactions |
27 | ″ | ″ | hadrons |
28 | ″ | ″ | inclusive spectra |
29 | ″ | ″ | interaction |
30 | ″ | ″ | main categories |
31 | ″ | ″ | mass number dependence |
32 | ″ | ″ | model |
33 | ″ | ″ | nuclear mass number dependence |
34 | ″ | ″ | number |
35 | ″ | ″ | number dependence |
36 | ″ | ″ | observations |
37 | ″ | ″ | one |
38 | ″ | ″ | particle production process |
39 | ″ | ″ | particle spectra |
40 | ″ | ″ | particles |
41 | ″ | ″ | picture |
42 | ″ | ″ | preasymptotic corrections |
43 | ″ | ″ | process |
44 | ″ | ″ | production process |
45 | ″ | ″ | projectile |
46 | ″ | ″ | projectile fragmentation region |
47 | ″ | ″ | quantum numbers |
48 | ″ | ″ | quarks |
49 | ″ | ″ | region |
50 | ″ | ″ | second one |
51 | ″ | ″ | soft hadronic interactions |
52 | ″ | ″ | space-time picture |
53 | ″ | ″ | spectra |
54 | ″ | ″ | structure |
55 | ″ | ″ | topological structure |
56 | ″ | ″ | universality |
57 | ″ | ″ | valence |
58 | ″ | ″ | αs |
59 | ″ | ″ | αυ |
60 | ″ | schema:name | Topological pomeron andA-universality |
61 | ″ | schema:pagination | 665-671 |
62 | ″ | schema:productId | Nb2163816a591403db58a0d2055053ca3 |
63 | ″ | ″ | Ne6fa983eeeca4867a4ce40b017313455 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049467443 |
65 | ″ | ″ | https://doi.org/10.1007/bf01549088 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:18 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N6aab806f501446aaaf17841cb83e3d5f |
69 | ″ | schema:url | https://doi.org/10.1007/bf01549088 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | articles |
72 | ″ | rdf:type | schema:ScholarlyArticle |
73 | N6aab806f501446aaaf17841cb83e3d5f | schema:name | Springer Nature - SN SciGraph project |
74 | ″ | rdf:type | schema:Organization |
75 | N74a0a680c916435ca1ecd88464eba79e | rdf:first | sg:person.07653611431.49 |
76 | ″ | rdf:rest | rdf:nil |
77 | N8ee44e1f7bfd43dcbf9dc6b74e88ee24 | schema:volumeNumber | 44 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | Nb2163816a591403db58a0d2055053ca3 | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1049467443 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Ncd9b33b87960427c913262ad7e95ee7d | schema:issueNumber | 4 |
83 | ″ | rdf:type | schema:PublicationIssue |
84 | Ne6fa983eeeca4867a4ce40b017313455 | schema:name | doi |
85 | ″ | schema:value | 10.1007/bf01549088 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Physical Sciences |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | sg:journal.1285003 | schema:issn | 0170-9739 |
94 | ″ | ″ | 1431-5858 |
95 | ″ | schema:name | Zeitschrift für Physik C Particles and Fields |
96 | ″ | schema:publisher | Springer Nature |
97 | ″ | rdf:type | schema:Periodical |
98 | sg:person.07653611431.49 | schema:affiliation | grid-institutes:grid.21626.31 |
99 | ″ | schema:familyName | Zoller |
100 | ″ | schema:givenName | V. R. |
101 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49 |
102 | ″ | rdf:type | schema:Person |
103 | sg:pub.10.1007/bf01414185 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049784244 |
104 | ″ | ″ | https://doi.org/10.1007/bf01414185 |
105 | ″ | rdf:type | schema:CreativeWork |
106 | sg:pub.10.1007/bf01557469 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029075607 |
107 | ″ | ″ | https://doi.org/10.1007/bf01557469 |
108 | ″ | rdf:type | schema:CreativeWork |
109 | sg:pub.10.1007/bf01560688 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010933912 |
110 | ″ | ″ | https://doi.org/10.1007/bf01560688 |
111 | ″ | rdf:type | schema:CreativeWork |
112 | sg:pub.10.1007/bf01566921 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017587612 |
113 | ″ | ″ | https://doi.org/10.1007/bf01566921 |
114 | ″ | rdf:type | schema:CreativeWork |
115 | grid-institutes:grid.21626.31 | schema:alternateName | Institute of Theoretical and Experimental Physics, SU-117259, Moscow, USSR |
116 | ″ | schema:name | Institute of Theoretical and Experimental Physics, SU-117259, Moscow, USSR |
117 | ″ | rdf:type | schema:Organization |