Hölder continuity of solutions to quasilinear elliptic equations involving measures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-09

AUTHORS

Tero Kilpeläinen

ABSTRACT

We show that the solutionu of the equation is locally β-Hölder continuous provided that the measure μ satisfies the condition μ(B(x,r))⩽Mrn − p + α(p − 1) for some α>β. A corresponding result for more general operators is also proven.

PAGES

265-272

Journal

TITLE

Potential Analysis

ISSUE

3

VOLUME

3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01468246

DOI

http://dx.doi.org/10.1007/bf01468246

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009962071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Jyv\u00e4skyl\u00e4", 
          "id": "https://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35, 40351, Jyv\u00e4skyl\u00e4, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kilpel\u00e4inen", 
        "givenName": "Tero", 
        "id": "sg:person.011161247457.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02559490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005298609", 
          "https://doi.org/10.1007/bf02559490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005597834", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005597834", 
          "https://doi.org/10.1007/978-3-662-03282-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005597834", 
          "https://doi.org/10.1007/978-3-662-03282-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1990-0998128-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309308820969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025965824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02795502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027689684", 
          "https://doi.org/10.1007/bf02795502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02795502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027689684", 
          "https://doi.org/10.1007/bf02795502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036075514", 
          "https://doi.org/10.1007/bf02392793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400881628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044537546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(88)90070-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051579167"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-09", 
    "datePublishedReg": "1994-09-01", 
    "description": "We show that the solutionu of the equation is locally \u03b2-H\u00f6lder continuous provided that the measure \u03bc satisfies the condition \u03bc(B(x,r))\u2a7dMrn \u2212 p + \u03b1(p \u2212 1) for some \u03b1>\u03b2. A corresponding result for more general operators is also proven.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01468246", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135984", 
        "issn": [
          "0926-2601", 
          "1572-929X"
        ], 
        "name": "Potential Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "H\u00f6lder continuity of solutions to quasilinear elliptic equations involving measures", 
    "pagination": "265-272", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f7562d520a7369583e00504dcd67de255c365b99934cf3a9bdfdcbaf04de6b1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01468246"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009962071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01468246", 
      "https://app.dimensions.ai/details/publication/pub.1009962071"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01468246"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01468246'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01468246'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01468246'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01468246'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      20 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01468246 schema:author Ne1da87b0669d4fd7b189ab38c491c58b
2 schema:citation sg:pub.10.1007/978-3-662-03282-4
3 sg:pub.10.1007/bf02392793
4 sg:pub.10.1007/bf02559490
5 sg:pub.10.1007/bf02795502
6 https://app.dimensions.ai/details/publication/pub.1005597834
7 https://doi.org/10.1016/0022-0396(88)90070-8
8 https://doi.org/10.1080/03605309308820969
9 https://doi.org/10.1090/s0002-9947-1990-0998128-9
10 https://doi.org/10.1515/9781400881628
11 schema:datePublished 1994-09
12 schema:datePublishedReg 1994-09-01
13 schema:description We show that the solutionu of the equation is locally β-Hölder continuous provided that the measure μ satisfies the condition μ(B(x,r))⩽Mrn − p + α(p − 1) for some α>β. A corresponding result for more general operators is also proven.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Na5e8a96f50de4ffd8b19ce5c9b7bd5a5
18 Nfdde9c46e33b4fee9333448a36fbf12b
19 sg:journal.1135984
20 schema:name Hölder continuity of solutions to quasilinear elliptic equations involving measures
21 schema:pagination 265-272
22 schema:productId N4db500cf979d4403a96719d56919fd75
23 N575746f8ad46495b9d6212ec50acb2fc
24 N87a34c97cf884f07bb6bb7ca3bd607aa
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009962071
26 https://doi.org/10.1007/bf01468246
27 schema:sdDatePublished 2019-04-11T13:30
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N6a113876e5ff4aa59a31631d49198b88
30 schema:url http://link.springer.com/10.1007%2FBF01468246
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N4db500cf979d4403a96719d56919fd75 schema:name dimensions_id
35 schema:value pub.1009962071
36 rdf:type schema:PropertyValue
37 N575746f8ad46495b9d6212ec50acb2fc schema:name readcube_id
38 schema:value 2f7562d520a7369583e00504dcd67de255c365b99934cf3a9bdfdcbaf04de6b1
39 rdf:type schema:PropertyValue
40 N6a113876e5ff4aa59a31631d49198b88 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N87a34c97cf884f07bb6bb7ca3bd607aa schema:name doi
43 schema:value 10.1007/bf01468246
44 rdf:type schema:PropertyValue
45 Na5e8a96f50de4ffd8b19ce5c9b7bd5a5 schema:volumeNumber 3
46 rdf:type schema:PublicationVolume
47 Ne1da87b0669d4fd7b189ab38c491c58b rdf:first sg:person.011161247457.34
48 rdf:rest rdf:nil
49 Nfdde9c46e33b4fee9333448a36fbf12b schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 sg:journal.1135984 schema:issn 0926-2601
52 1572-929X
53 schema:name Potential Analysis
54 rdf:type schema:Periodical
55 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
56 schema:familyName Kilpeläinen
57 schema:givenName Tero
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
59 rdf:type schema:Person
60 sg:pub.10.1007/978-3-662-03282-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005597834
61 https://doi.org/10.1007/978-3-662-03282-4
62 rdf:type schema:CreativeWork
63 sg:pub.10.1007/bf02392793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036075514
64 https://doi.org/10.1007/bf02392793
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/bf02559490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005298609
67 https://doi.org/10.1007/bf02559490
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf02795502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027689684
70 https://doi.org/10.1007/bf02795502
71 rdf:type schema:CreativeWork
72 https://app.dimensions.ai/details/publication/pub.1005597834 schema:CreativeWork
73 https://doi.org/10.1016/0022-0396(88)90070-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051579167
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1080/03605309308820969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025965824
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1090/s0002-9947-1990-0998128-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726451
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1515/9781400881628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044537546
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
82 schema:name Department of Mathematics, University of Jyväskylä, P.O. Box 35, 40351, Jyväskylä, Finland
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...