Parametric study of atmospheric-pressure diamond synthesis with an inductively coupled plasma torch View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

T. G. Owano, C. H. Kruger

ABSTRACT

Polycrystalline diamond coatings have been deposited run molybdenum and silicon substrates using an inductively coupled, atmospheric-pressure plasma torch. Growth rates are on the order of 10 μ hr. The inductively coupled plasma reactor is found to produce a uniform, well-characterized growth environment for experimental and computational .study of the atmospheric-pressure diamond growth regime. Growth morphology is found to be sensitive to reactor conditions such as substrate surface temperature and methane-to-hydrogen feed ratio. An experimental parametric study of these variables is performed and the resultant growth analyzed by scanning electron microscopy, Raman spectroscopy, and X-ray diffraction Spectroscopic analysis of the gas phase is also performed. Results indicate that the, substrate temperature range over which diamond growth occurs shifts toward higher temperatures as the methane-to-hydrogen feed ratio is increased. The growth rate is observed to reach a maximum with varying methane-to-hydrogen feed ratio at constant substrate temperature. Raman analysis of the deposits indicates that higher-quality diamond is achieved at the highest limits of substrate temperature for a given methane-to-hydrogen ratio. Higher-quality diamond is also observed to be, formed at lower methane-to-hydrogen feed ratios. More... »

PAGES

433-446

References to SciGraph publications

  • 1987-05. The growth of diamond in microwave plasma under low pressure in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01465874

    DOI

    http://dx.doi.org/10.1007/bf01465874

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047535619


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, 94305-3032, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Owano", 
            "givenName": "T. G.", 
            "id": "sg:person.015744753251.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744753251.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, 94305-3032, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kruger", 
            "givenName": "C. H.", 
            "id": "sg:person.07571360103.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07571360103.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1557/jmr.1990.2326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006402702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(91)90121-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015132434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(91)90121-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015132434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2086540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017621973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(92)90021-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025190458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(92)90021-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025190458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01132374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028802693", 
              "https://doi.org/10.1007/bf01132374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01132374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028802693", 
              "https://doi.org/10.1007/bf01132374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(91)90005-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031569479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(91)90005-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031569479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/jmr.1990.2424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044618778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.859228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058112431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.11740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060556643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.11740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060556643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.575297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062185344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.247.4943.688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062539116"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-09", 
        "datePublishedReg": "1993-09-01", 
        "description": "Polycrystalline diamond coatings have been deposited run molybdenum and silicon substrates using an inductively coupled, atmospheric-pressure plasma torch. Growth rates are on the order of 10 \u03bc hr. The inductively coupled plasma reactor is found to produce a uniform, well-characterized growth environment for experimental and computational .study of the atmospheric-pressure diamond growth regime. Growth morphology is found to be sensitive to reactor conditions such as substrate surface temperature and methane-to-hydrogen feed ratio. An experimental parametric study of these variables is performed and the resultant growth analyzed by scanning electron microscopy, Raman spectroscopy, and X-ray diffraction Spectroscopic analysis of the gas phase is also performed. Results indicate that the, substrate temperature range over which diamond growth occurs shifts toward higher temperatures as the methane-to-hydrogen feed ratio is increased. The growth rate is observed to reach a maximum with varying methane-to-hydrogen feed ratio at constant substrate temperature. Raman analysis of the deposits indicates that higher-quality diamond is achieved at the highest limits of substrate temperature for a given methane-to-hydrogen ratio. Higher-quality diamond is also observed to be, formed at lower methane-to-hydrogen feed ratios.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01465874", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1124016", 
            "issn": [
              "0272-4324", 
              "1572-8986"
            ], 
            "name": "Plasma Chemistry and Plasma Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Parametric study of atmospheric-pressure diamond synthesis with an inductively coupled plasma torch", 
        "pagination": "433-446", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e2721c22beec859b500773a006a91a7c44c920b8d1d3d9efc935abd5dc866f35"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01465874"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047535619"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01465874", 
          "https://app.dimensions.ai/details/publication/pub.1047535619"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01465874"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01465874'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01465874'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01465874'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01465874'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01465874 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N490c8ba1888043d49f246e20718df30f
    4 schema:citation sg:pub.10.1007/bf01132374
    5 https://doi.org/10.1016/0022-0248(91)90121-k
    6 https://doi.org/10.1016/0925-9635(91)90005-u
    7 https://doi.org/10.1016/0925-9635(92)90021-f
    8 https://doi.org/10.1063/1.859228
    9 https://doi.org/10.1103/physrevb.43.11740
    10 https://doi.org/10.1116/1.575297
    11 https://doi.org/10.1126/science.247.4943.688
    12 https://doi.org/10.1149/1.2086540
    13 https://doi.org/10.1557/jmr.1990.2326
    14 https://doi.org/10.1557/jmr.1990.2424
    15 schema:datePublished 1993-09
    16 schema:datePublishedReg 1993-09-01
    17 schema:description Polycrystalline diamond coatings have been deposited run molybdenum and silicon substrates using an inductively coupled, atmospheric-pressure plasma torch. Growth rates are on the order of 10 μ hr. The inductively coupled plasma reactor is found to produce a uniform, well-characterized growth environment for experimental and computational .study of the atmospheric-pressure diamond growth regime. Growth morphology is found to be sensitive to reactor conditions such as substrate surface temperature and methane-to-hydrogen feed ratio. An experimental parametric study of these variables is performed and the resultant growth analyzed by scanning electron microscopy, Raman spectroscopy, and X-ray diffraction Spectroscopic analysis of the gas phase is also performed. Results indicate that the, substrate temperature range over which diamond growth occurs shifts toward higher temperatures as the methane-to-hydrogen feed ratio is increased. The growth rate is observed to reach a maximum with varying methane-to-hydrogen feed ratio at constant substrate temperature. Raman analysis of the deposits indicates that higher-quality diamond is achieved at the highest limits of substrate temperature for a given methane-to-hydrogen ratio. Higher-quality diamond is also observed to be, formed at lower methane-to-hydrogen feed ratios.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N0f3cfd69390b4fcfaeacd0c71037444b
    22 N53914880ae204dd1b030c5ff322ab013
    23 sg:journal.1124016
    24 schema:name Parametric study of atmospheric-pressure diamond synthesis with an inductively coupled plasma torch
    25 schema:pagination 433-446
    26 schema:productId N0ba7babd6c064941941d7dde8d01f76f
    27 Na2a77a11e32b4bae84413cf3590f4d60
    28 Ne6b969a141104b388e8fc18d4a734380
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047535619
    30 https://doi.org/10.1007/bf01465874
    31 schema:sdDatePublished 2019-04-11T13:32
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N2cfc4491ca3146d59a18ce19fd3f23b0
    34 schema:url http://link.springer.com/10.1007/BF01465874
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N00e12892a9034b1f961d9799762b3416 rdf:first sg:person.07571360103.23
    39 rdf:rest rdf:nil
    40 N0ba7babd6c064941941d7dde8d01f76f schema:name readcube_id
    41 schema:value e2721c22beec859b500773a006a91a7c44c920b8d1d3d9efc935abd5dc866f35
    42 rdf:type schema:PropertyValue
    43 N0f3cfd69390b4fcfaeacd0c71037444b schema:issueNumber 3
    44 rdf:type schema:PublicationIssue
    45 N2cfc4491ca3146d59a18ce19fd3f23b0 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N490c8ba1888043d49f246e20718df30f rdf:first sg:person.015744753251.56
    48 rdf:rest N00e12892a9034b1f961d9799762b3416
    49 N53914880ae204dd1b030c5ff322ab013 schema:volumeNumber 13
    50 rdf:type schema:PublicationVolume
    51 Na2a77a11e32b4bae84413cf3590f4d60 schema:name doi
    52 schema:value 10.1007/bf01465874
    53 rdf:type schema:PropertyValue
    54 Ne6b969a141104b388e8fc18d4a734380 schema:name dimensions_id
    55 schema:value pub.1047535619
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Chemical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Physical Chemistry (incl. Structural)
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1124016 schema:issn 0272-4324
    64 1572-8986
    65 schema:name Plasma Chemistry and Plasma Processing
    66 rdf:type schema:Periodical
    67 sg:person.015744753251.56 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    68 schema:familyName Owano
    69 schema:givenName T. G.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744753251.56
    71 rdf:type schema:Person
    72 sg:person.07571360103.23 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    73 schema:familyName Kruger
    74 schema:givenName C. H.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07571360103.23
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf01132374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028802693
    78 https://doi.org/10.1007/bf01132374
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/0022-0248(91)90121-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1015132434
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/0925-9635(91)90005-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1031569479
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0925-9635(92)90021-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1025190458
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1063/1.859228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058112431
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physrevb.43.11740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060556643
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1116/1.575297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062185344
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1126/science.247.4943.688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062539116
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1149/1.2086540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017621973
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1557/jmr.1990.2326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006402702
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1557/jmr.1990.2424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044618778
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    101 schema:name High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, 94305-3032, Stanford, California, USA
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...