Modeling and experimental study of a transferred arc stabilized with argon and flowing in a controlled-atmosphere chamber filled with argon ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

J. F. Coudert, C. Delalondre, P. Roumilhac, O. Simonin, P. Fauchais

ABSTRACT

For a transferred arc with a flat anode working at atmospheric pressure in an argon atmosphere, the influence of the gas injector design close to the cathode tip has been systematically studied for arc currents below 300 A, gas flowrates between 5 and 60 slm, and anode-cathode distances between 10 and 46 mm. Two types of injector configurations hare been studied: a cylindrical one with its wall parallel to the cathode axis and a conical one with the same cone angle as that of the cathode tip. The arc temperature was measured using flit, absolute intensity of ArI and ArII lines. Beside the roltagc and arc current, the losses at the cathode and at the anode were continuously recorded. An elliptic model was used to calculate the flow velocity, the temperature, and the current density close to the cathode and in the arc column. This model was either laminar or turbulent (K - ɛ), with the empirical constants being functions of the Reynolds nunther of turbulence. A cathode sheath with nonequilibrium conditions was used to obtain accurate cathode boundary conditions. Experiments and modeling hart shown the benefits of using conical injectors which constrict drasfically the plasma_ flow and enhance the gas velocity and the current density, thus increasing the heat flux to the anode. With the cylindrical injector, recirculations close to the cathode lip modify deeply its heating and reduce the plasma jet constriction: velocities and temperatures are lower when the recirculation velocity is higher. This results in lower heat fluxes to the anode compared to the conical injector. More... »

PAGES

399-432

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01465873

DOI

http://dx.doi.org/10.1007/bf01465873

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040498316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Laboratoire C\u00e9ramiques Nouvelles, University of Limoges, URA 320 CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coudert", 
        "givenName": "J. F.", 
        "id": "sg:person.015171403330.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171403330.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Laboratoire C\u00e9ramiques Nouvelles, University of Limoges, URA 320 CNRS, France", 
            "Laboratoire National d'Hydraulique EDF, 6, Quai Watier, 78400, Chatou, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delalondre", 
        "givenName": "C.", 
        "id": "sg:person.012274452004.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274452004.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Laboratoire C\u00e9ramiques Nouvelles, University of Limoges, URA 320 CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roumilhac", 
        "givenName": "P.", 
        "id": "sg:person.016411606333.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016411606333.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Laboratoire C\u00e9ramiques Nouvelles, University of Limoges, URA 320 CNRS, France", 
            "Laboratoire National d'Hydraulique EDF, 6, Quai Watier, 78400, Chatou, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simonin", 
        "givenName": "O.", 
        "id": "sg:person.07356571156.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356571156.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Limoges", 
          "id": "https://www.grid.ac/institutes/grid.9966.0", 
          "name": [
            "Laboratoire C\u00e9ramiques Nouvelles, University of Limoges, URA 320 CNRS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fauchais", 
        "givenName": "P.", 
        "id": "sg:person.010314422065.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314422065.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0029-5493(87)90133-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006271534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5493(87)90133-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006271534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450600615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009510353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450600615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009510353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01023914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014502469", 
          "https://doi.org/10.1007/bf01023914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-067635-4.50012-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022442440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00567563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027786718", 
          "https://doi.org/10.1007/bf00567563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00567563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027786718", 
          "https://doi.org/10.1007/bf00567563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690290206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031743195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01015874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036057958", 
          "https://doi.org/10.1007/bf01015874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0094-4548(74)90150-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0094-4548(74)90150-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-349701-7.50010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048246414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-b.1987.0040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056842670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019900051010500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056992426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1728803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057795303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.328063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057930643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.331236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057935210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.332195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057936414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.332606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057936880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.332672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057936961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/27.3858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061139851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-09", 
    "datePublishedReg": "1993-09-01", 
    "description": "For a transferred arc with a flat anode working at atmospheric pressure in an argon atmosphere, the influence of the gas injector design close to the cathode tip has been systematically studied for arc currents below 300 A, gas flowrates between 5 and 60 slm, and anode-cathode distances between 10 and 46 mm. Two types of injector configurations hare been studied: a cylindrical one with its wall parallel to the cathode axis and a conical one with the same cone angle as that of the cathode tip. The arc temperature was measured using flit, absolute intensity of ArI and ArII lines. Beside the roltagc and arc current, the losses at the cathode and at the anode were continuously recorded. An elliptic model was used to calculate the flow velocity, the temperature, and the current density close to the cathode and in the arc column. This model was either laminar or turbulent (K - \u025b), with the empirical constants being functions of the Reynolds nunther of turbulence. A cathode sheath with nonequilibrium conditions was used to obtain accurate cathode boundary conditions. Experiments and modeling hart shown the benefits of using conical injectors which constrict drasfically the plasma_ flow and enhance the gas velocity and the current density, thus increasing the heat flux to the anode. With the cylindrical injector, recirculations close to the cathode lip modify deeply its heating and reduce the plasma jet constriction: velocities and temperatures are lower when the recirculation velocity is higher. This results in lower heat fluxes to the anode compared to the conical injector.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01465873", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1124016", 
        "issn": [
          "0272-4324", 
          "1572-8986"
        ], 
        "name": "Plasma Chemistry and Plasma Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Modeling and experimental study of a transferred arc stabilized with argon and flowing in a controlled-atmosphere chamber filled with argon at atmospheric pressure", 
    "pagination": "399-432", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c0eb07e270aaef2b8cd2a2c9399551a85b3369a3b8930f705164f58bcb9a327c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01465873"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040498316"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01465873", 
      "https://app.dimensions.ai/details/publication/pub.1040498316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01465873"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01465873'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01465873'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01465873'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01465873'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01465873 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N89b9f0c4456647e3b8bdb0203baad486
4 schema:citation sg:pub.10.1007/bf00567563
5 sg:pub.10.1007/bf01015874
6 sg:pub.10.1007/bf01023914
7 https://doi.org/10.1002/aic.690290206
8 https://doi.org/10.1002/cjce.5450600615
9 https://doi.org/10.1016/0029-5493(87)90133-6
10 https://doi.org/10.1016/0094-4548(74)90150-7
11 https://doi.org/10.1016/b978-0-12-067635-4.50012-0
12 https://doi.org/10.1016/b978-0-12-349701-7.50010-9
13 https://doi.org/10.1049/ip-b.1987.0040
14 https://doi.org/10.1051/jphys:019900051010500
15 https://doi.org/10.1063/1.1728803
16 https://doi.org/10.1063/1.328063
17 https://doi.org/10.1063/1.331236
18 https://doi.org/10.1063/1.332195
19 https://doi.org/10.1063/1.332606
20 https://doi.org/10.1063/1.332672
21 https://doi.org/10.1109/27.3858
22 schema:datePublished 1993-09
23 schema:datePublishedReg 1993-09-01
24 schema:description For a transferred arc with a flat anode working at atmospheric pressure in an argon atmosphere, the influence of the gas injector design close to the cathode tip has been systematically studied for arc currents below 300 A, gas flowrates between 5 and 60 slm, and anode-cathode distances between 10 and 46 mm. Two types of injector configurations hare been studied: a cylindrical one with its wall parallel to the cathode axis and a conical one with the same cone angle as that of the cathode tip. The arc temperature was measured using flit, absolute intensity of ArI and ArII lines. Beside the roltagc and arc current, the losses at the cathode and at the anode were continuously recorded. An elliptic model was used to calculate the flow velocity, the temperature, and the current density close to the cathode and in the arc column. This model was either laminar or turbulent (K - ɛ), with the empirical constants being functions of the Reynolds nunther of turbulence. A cathode sheath with nonequilibrium conditions was used to obtain accurate cathode boundary conditions. Experiments and modeling hart shown the benefits of using conical injectors which constrict drasfically the plasma_ flow and enhance the gas velocity and the current density, thus increasing the heat flux to the anode. With the cylindrical injector, recirculations close to the cathode lip modify deeply its heating and reduce the plasma jet constriction: velocities and temperatures are lower when the recirculation velocity is higher. This results in lower heat fluxes to the anode compared to the conical injector.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N8efad8de9ff9447f836ef085ab691019
29 Ne2bf46ae05224369849f38a96e28a01e
30 sg:journal.1124016
31 schema:name Modeling and experimental study of a transferred arc stabilized with argon and flowing in a controlled-atmosphere chamber filled with argon at atmospheric pressure
32 schema:pagination 399-432
33 schema:productId N1e0c67633a3a42708bf4d1b6019756eb
34 N5be7ac03b2384c2289f137de03511b1b
35 N617939af90d54f019113898f7915cafb
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040498316
37 https://doi.org/10.1007/bf01465873
38 schema:sdDatePublished 2019-04-11T13:34
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nc3a438ffd68c47699a0d082b7234b2ae
41 schema:url http://link.springer.com/10.1007/BF01465873
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1e0c67633a3a42708bf4d1b6019756eb schema:name dimensions_id
46 schema:value pub.1040498316
47 rdf:type schema:PropertyValue
48 N39cdb692525549bd9d2b97a48cfa14a3 rdf:first sg:person.012274452004.18
49 rdf:rest N847cb2ff761440a1b06ab79ac6ef7fd2
50 N519b7a678a134816ab37f79412f72732 rdf:first sg:person.010314422065.04
51 rdf:rest rdf:nil
52 N5be7ac03b2384c2289f137de03511b1b schema:name readcube_id
53 schema:value c0eb07e270aaef2b8cd2a2c9399551a85b3369a3b8930f705164f58bcb9a327c
54 rdf:type schema:PropertyValue
55 N617939af90d54f019113898f7915cafb schema:name doi
56 schema:value 10.1007/bf01465873
57 rdf:type schema:PropertyValue
58 N847cb2ff761440a1b06ab79ac6ef7fd2 rdf:first sg:person.016411606333.90
59 rdf:rest Ne36f79a7a4d34368b54f1ae305c90fe0
60 N89b9f0c4456647e3b8bdb0203baad486 rdf:first sg:person.015171403330.04
61 rdf:rest N39cdb692525549bd9d2b97a48cfa14a3
62 N8efad8de9ff9447f836ef085ab691019 schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 Nc3a438ffd68c47699a0d082b7234b2ae schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ne2bf46ae05224369849f38a96e28a01e schema:volumeNumber 13
67 rdf:type schema:PublicationVolume
68 Ne36f79a7a4d34368b54f1ae305c90fe0 rdf:first sg:person.07356571156.29
69 rdf:rest N519b7a678a134816ab37f79412f72732
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
74 schema:name Interdisciplinary Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1124016 schema:issn 0272-4324
77 1572-8986
78 schema:name Plasma Chemistry and Plasma Processing
79 rdf:type schema:Periodical
80 sg:person.010314422065.04 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
81 schema:familyName Fauchais
82 schema:givenName P.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314422065.04
84 rdf:type schema:Person
85 sg:person.012274452004.18 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
86 schema:familyName Delalondre
87 schema:givenName C.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274452004.18
89 rdf:type schema:Person
90 sg:person.015171403330.04 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
91 schema:familyName Coudert
92 schema:givenName J. F.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171403330.04
94 rdf:type schema:Person
95 sg:person.016411606333.90 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
96 schema:familyName Roumilhac
97 schema:givenName P.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016411606333.90
99 rdf:type schema:Person
100 sg:person.07356571156.29 schema:affiliation https://www.grid.ac/institutes/grid.9966.0
101 schema:familyName Simonin
102 schema:givenName O.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356571156.29
104 rdf:type schema:Person
105 sg:pub.10.1007/bf00567563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027786718
106 https://doi.org/10.1007/bf00567563
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01015874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036057958
109 https://doi.org/10.1007/bf01015874
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01023914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014502469
112 https://doi.org/10.1007/bf01023914
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/aic.690290206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031743195
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/cjce.5450600615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009510353
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0029-5493(87)90133-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006271534
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0094-4548(74)90150-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523634
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/b978-0-12-067635-4.50012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022442440
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/b978-0-12-349701-7.50010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048246414
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1049/ip-b.1987.0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056842670
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1051/jphys:019900051010500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056992426
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.1728803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057795303
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.328063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057930643
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.331236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057935210
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.332195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057936414
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.332606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057936880
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.332672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057936961
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/27.3858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061139851
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.9966.0 schema:alternateName University of Limoges
145 schema:name Laboratoire Céramiques Nouvelles, University of Limoges, URA 320 CNRS, France
146 Laboratoire National d'Hydraulique EDF, 6, Quai Watier, 78400, Chatou, France
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...