Heegner points and derivatives ofL-series. II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-03

AUTHORS

B. Gross, W. Kohnen, D. Zagier

ABSTRACT

N/A

PAGES

497-562

References to SciGraph publications

  • 1941-12. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 1976-12. Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus in INVENTIONES MATHEMATICAE
  • 1980. Arithmétique des Algèbres de Quaternions in NONE
  • 1985-04. Fourier coefficients of modular forms of half-integral weight in MATHEMATISCHE ANNALEN
  • 1981. Eisenstein Series and the Riemann Zeta-Function in AUTOMORPHIC FORMS, REPRESENTATION THEORY AND ARITHMETIC
  • 1988-02. Jacobi forms and a certain space of modular forms in INVENTIONES MATHEMATICAE
  • 1985. The Theory of Jacobi Forms in NONE
  • 1975-02. Modular forms associated to real quadratic fields in INVENTIONES MATHEMATICAE
  • 1985. Modular points, modular curves, modular surfaces and modular forms in ARBEITSTAGUNG BONN 1984
  • 1986-06. Heegner points and derivatives ofL-series in INVENTIONES MATHEMATICAE
  • 1986. Local Heights on Curves in ARITHMETIC GEOMETRY
  • 1977. Modular forms whose fourier coefficients involve zeta-functions of quadratic fields in MODULAR FUNCTIONS OF ONE VARIABLE VI
  • 1977. A lifting of modular forms in one variable to hilbert modular forms in two variables in MODULAR FUNCTIONS OF ONE VARIABLE VI
  • 1986-06. On canonical and quasi-canonical liftings in INVENTIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01458081

    DOI

    http://dx.doi.org/10.1007/bf01458081

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026477938


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gross", 
            "givenName": "B.", 
            "id": "sg:person.01203343204.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203343204.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Mathematics", 
              "id": "https://www.grid.ac/institutes/grid.461798.5", 
              "name": [
                "Mathematisches Institut, Universit\u00e4t M\u00fcnster, D-4400, M\u00fcnster, Federal Republic of Germany", 
                "Max-Planck-Institut f\u00fcr Mathematik, Gottfried-Claren-Strasse 26, D-5300, Bonn, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kohnen", 
            "givenName": "W.", 
            "id": "sg:person.011543774375.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011543774375.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Max-Planck-Institut f\u00fcr Mathematik, Gottfried-Claren-Strasse 26, D-5300, Bonn, Federal Republic of Germany", 
                "Department of Mathematics, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zagier", 
            "givenName": "D.", 
            "id": "sg:person.014615320431.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615320431.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4613-8655-1_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002899218", 
              "https://doi.org/10.1007/978-1-4613-8655-1_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0084592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003317256", 
              "https://doi.org/10.1007/bfb0084592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02940746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004570280", 
              "https://doi.org/10.1007/bf02940746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1985.355.191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005197535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01388810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012106000", 
              "https://doi.org/10.1007/bf01388810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01455989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018275843", 
              "https://doi.org/10.1007/bf01455989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01455989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018275843", 
              "https://doi.org/10.1007/bf01455989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01389846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021953278", 
              "https://doi.org/10.1007/bf01389846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01390005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022160824", 
              "https://doi.org/10.1007/bf01390005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023475770", 
              "https://doi.org/10.1007/bf01394347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1024495704", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9162-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024495704", 
              "https://doi.org/10.1007/978-1-4684-9162-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9162-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024495704", 
              "https://doi.org/10.1007/978-1-4684-9162-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0091027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024729235", 
              "https://doi.org/10.1007/bfb0091027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0091027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024729235", 
              "https://doi.org/10.1007/bfb0091027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0273-0979-1980-14757-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026925145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01388809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039451295", 
              "https://doi.org/10.1007/bf01388809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00734-1_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041263689", 
              "https://doi.org/10.1007/978-3-662-00734-1_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0065299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041685042", 
              "https://doi.org/10.1007/bfb0065299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0065301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042069803", 
              "https://doi.org/10.1007/bfb0065301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/03340649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070931101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400881710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096910805"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-03", 
        "datePublishedReg": "1987-03-01", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01458081", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1120885", 
            "issn": [
              "0025-5831", 
              "1432-1807"
            ], 
            "name": "Mathematische Annalen", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "278"
          }
        ], 
        "name": "Heegner points and derivatives ofL-series. II", 
        "pagination": "497-562", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7e241ce7bcd12a94595cc47e0fa7b3f14cae6d11848f021356baca3796efe3ff"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01458081"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026477938"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01458081", 
          "https://app.dimensions.ai/details/publication/pub.1026477938"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01458081"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01458081'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01458081'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01458081'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01458081'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      19 PREDICATES      43 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01458081 schema:author Na660763ba49b4104881030089ab250cc
    2 schema:citation sg:pub.10.1007/978-1-4613-8655-1_14
    3 sg:pub.10.1007/978-1-4684-9162-3
    4 sg:pub.10.1007/978-3-662-00734-1_10
    5 sg:pub.10.1007/bf01388809
    6 sg:pub.10.1007/bf01388810
    7 sg:pub.10.1007/bf01389846
    8 sg:pub.10.1007/bf01390005
    9 sg:pub.10.1007/bf01394347
    10 sg:pub.10.1007/bf01455989
    11 sg:pub.10.1007/bf02940746
    12 sg:pub.10.1007/bfb0065299
    13 sg:pub.10.1007/bfb0065301
    14 sg:pub.10.1007/bfb0084592
    15 sg:pub.10.1007/bfb0091027
    16 https://app.dimensions.ai/details/publication/pub.1024495704
    17 https://doi.org/10.1090/s0273-0979-1980-14757-6
    18 https://doi.org/10.1515/9781400881710
    19 https://doi.org/10.1515/crll.1985.355.191
    20 https://doi.org/10.2969/jmsj/03340649
    21 schema:datePublished 1987-03
    22 schema:datePublishedReg 1987-03-01
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N0631b79222bd4c9ca3b04ba0c5e06221
    27 N5bfbfbb0252548baa75f621df52bbd20
    28 sg:journal.1120885
    29 schema:name Heegner points and derivatives ofL-series. II
    30 schema:pagination 497-562
    31 schema:productId N0d21f70ba84e4dd996e723ee7985fa13
    32 N4fe915cbaec24ab4b450e850c0a6ba46
    33 Ne47ad22e9b354136a3a2619eec650a2e
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477938
    35 https://doi.org/10.1007/bf01458081
    36 schema:sdDatePublished 2019-04-11T13:36
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Ne63b4d735526412fa6e81c125f92fd00
    39 schema:url http://link.springer.com/10.1007/BF01458081
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N0631b79222bd4c9ca3b04ba0c5e06221 schema:issueNumber 1-4
    44 rdf:type schema:PublicationIssue
    45 N0d21f70ba84e4dd996e723ee7985fa13 schema:name dimensions_id
    46 schema:value pub.1026477938
    47 rdf:type schema:PropertyValue
    48 N441b5853d18d4c349261fa605041c673 rdf:first sg:person.011543774375.00
    49 rdf:rest Nb3a413a32c144e41a89c5da2c420b214
    50 N4fe915cbaec24ab4b450e850c0a6ba46 schema:name readcube_id
    51 schema:value 7e241ce7bcd12a94595cc47e0fa7b3f14cae6d11848f021356baca3796efe3ff
    52 rdf:type schema:PropertyValue
    53 N5bfbfbb0252548baa75f621df52bbd20 schema:volumeNumber 278
    54 rdf:type schema:PublicationVolume
    55 Na660763ba49b4104881030089ab250cc rdf:first sg:person.01203343204.18
    56 rdf:rest N441b5853d18d4c349261fa605041c673
    57 Nb3a413a32c144e41a89c5da2c420b214 rdf:first sg:person.014615320431.19
    58 rdf:rest rdf:nil
    59 Ne47ad22e9b354136a3a2619eec650a2e schema:name doi
    60 schema:value 10.1007/bf01458081
    61 rdf:type schema:PropertyValue
    62 Ne63b4d735526412fa6e81c125f92fd00 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 sg:journal.1120885 schema:issn 0025-5831
    65 1432-1807
    66 schema:name Mathematische Annalen
    67 rdf:type schema:Periodical
    68 sg:person.011543774375.00 schema:affiliation https://www.grid.ac/institutes/grid.461798.5
    69 schema:familyName Kohnen
    70 schema:givenName W.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011543774375.00
    72 rdf:type schema:Person
    73 sg:person.01203343204.18 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    74 schema:familyName Gross
    75 schema:givenName B.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203343204.18
    77 rdf:type schema:Person
    78 sg:person.014615320431.19 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    79 schema:familyName Zagier
    80 schema:givenName D.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615320431.19
    82 rdf:type schema:Person
    83 sg:pub.10.1007/978-1-4613-8655-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002899218
    84 https://doi.org/10.1007/978-1-4613-8655-1_14
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-1-4684-9162-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495704
    87 https://doi.org/10.1007/978-1-4684-9162-3
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-3-662-00734-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041263689
    90 https://doi.org/10.1007/978-3-662-00734-1_10
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01388809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039451295
    93 https://doi.org/10.1007/bf01388809
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01388810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012106000
    96 https://doi.org/10.1007/bf01388810
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01389846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021953278
    99 https://doi.org/10.1007/bf01389846
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01390005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022160824
    102 https://doi.org/10.1007/bf01390005
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01394347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023475770
    105 https://doi.org/10.1007/bf01394347
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01455989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018275843
    108 https://doi.org/10.1007/bf01455989
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02940746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004570280
    111 https://doi.org/10.1007/bf02940746
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bfb0065299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685042
    114 https://doi.org/10.1007/bfb0065299
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bfb0065301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042069803
    117 https://doi.org/10.1007/bfb0065301
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bfb0084592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003317256
    120 https://doi.org/10.1007/bfb0084592
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bfb0091027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024729235
    123 https://doi.org/10.1007/bfb0091027
    124 rdf:type schema:CreativeWork
    125 https://app.dimensions.ai/details/publication/pub.1024495704 schema:CreativeWork
    126 https://doi.org/10.1090/s0273-0979-1980-14757-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026925145
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1515/9781400881710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096910805
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1515/crll.1985.355.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005197535
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.2969/jmsj/03340649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070931101
    133 rdf:type schema:CreativeWork
    134 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
    135 schema:name Department of Mathematics, University of Maryland, 20742, College Park, MD, USA
    136 Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-5300, Bonn, Federal Republic of Germany
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    139 schema:name Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA
    140 rdf:type schema:Organization
    141 https://www.grid.ac/institutes/grid.461798.5 schema:alternateName Max Planck Institute for Mathematics
    142 schema:name Mathematisches Institut, Universität Münster, D-4400, Münster, Federal Republic of Germany
    143 Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, D-5300, Bonn, Federal Republic of Germany
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...