Infinite dimensional stochastic differential equation models for spatially distributed neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-10

AUTHORS

G. Kallianpur, R. Wolpert

ABSTRACT

The membrane potential of spatially distributed neurons is modeled as a random field driven by a generalized Poisson process. Approximation to an Ornstein-Uhlenbeck type process is established in the sense of weak convergence of the induced measures in Skorokhod space.

PAGES

125-172

References to SciGraph publications

Journal

TITLE

Applied Mathematics & Optimization

ISSUE

1

VOLUME

12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01449039

DOI

http://dx.doi.org/10.1007/bf01449039

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022109358


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kallianpur", 
        "givenName": "G.", 
        "id": "sg:person.011034352655.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034352655.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolpert", 
        "givenName": "R.", 
        "id": "sg:person.01244410044.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244410044.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160150203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004167092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160150203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004167092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(79)90174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005723174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200042121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014892947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800036004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(75)90054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022463469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024459563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024459563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46175-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183879", 
          "https://doi.org/10.1007/978-3-642-46175-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46175-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183879", 
          "https://doi.org/10.1007/978-3-642-46175-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035652530", 
          "https://doi.org/10.1007/bf01845839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035652530", 
          "https://doi.org/10.1007/bf01845839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000019231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039204274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045821662", 
          "https://doi.org/10.1007/bf00337416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1426683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069489680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195188837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935351"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-10", 
    "datePublishedReg": "1984-10-01", 
    "description": "The membrane potential of spatially distributed neurons is modeled as a random field driven by a generalized Poisson process. Approximation to an Ornstein-Uhlenbeck type process is established in the sense of weak convergence of the induced measures in Skorokhod space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01449039", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Infinite dimensional stochastic differential equation models for spatially distributed neurons", 
    "pagination": "125-172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6955829cce84bd5bca0737a91003a8c660db801cae88b0b8d77d4448962b22b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01449039"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022109358"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01449039", 
      "https://app.dimensions.ai/details/publication/pub.1022109358"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01449039"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      20 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01449039 schema:author Ncaafe43be7e74eb28ec71f5814470e70
2 schema:citation sg:pub.10.1007/978-3-642-46175-0
3 sg:pub.10.1007/bf00337416
4 sg:pub.10.1007/bf01845839
5 https://doi.org/10.1002/cpa.3160120405
6 https://doi.org/10.1002/cpa.3160150203
7 https://doi.org/10.1016/0022-5193(79)90174-7
8 https://doi.org/10.1016/0047-259x(75)90054-8
9 https://doi.org/10.1017/s0001867800036004
10 https://doi.org/10.1017/s0021900200042121
11 https://doi.org/10.1017/s0027763000019231
12 https://doi.org/10.2307/1426683
13 https://doi.org/10.2307/3212499
14 https://doi.org/10.2977/prims/1195188837
15 schema:datePublished 1984-10
16 schema:datePublishedReg 1984-10-01
17 schema:description The membrane potential of spatially distributed neurons is modeled as a random field driven by a generalized Poisson process. Approximation to an Ornstein-Uhlenbeck type process is established in the sense of weak convergence of the induced measures in Skorokhod space.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N066ac06415d44b8fa8c30e8c1fcac659
22 N8b520d5d07184fc8b104f1635ccaaac4
23 sg:journal.1120592
24 schema:name Infinite dimensional stochastic differential equation models for spatially distributed neurons
25 schema:pagination 125-172
26 schema:productId N55da274057084f64bf057713b0f8d168
27 N93d03417cf404925922cb357ab067e4a
28 Ne427a2dc8f014a97abce579f5e5b97c6
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022109358
30 https://doi.org/10.1007/bf01449039
31 schema:sdDatePublished 2019-04-11T13:30
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nbca49140b62746d081f45203b2c98fd8
34 schema:url http://link.springer.com/10.1007/BF01449039
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N066ac06415d44b8fa8c30e8c1fcac659 schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N1f34fc182f7847de969347ed1512c6d7 rdf:first sg:person.01244410044.02
41 rdf:rest rdf:nil
42 N55da274057084f64bf057713b0f8d168 schema:name dimensions_id
43 schema:value pub.1022109358
44 rdf:type schema:PropertyValue
45 N8b520d5d07184fc8b104f1635ccaaac4 schema:volumeNumber 12
46 rdf:type schema:PublicationVolume
47 N93d03417cf404925922cb357ab067e4a schema:name doi
48 schema:value 10.1007/bf01449039
49 rdf:type schema:PropertyValue
50 Nbca49140b62746d081f45203b2c98fd8 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Ncaafe43be7e74eb28ec71f5814470e70 rdf:first sg:person.011034352655.74
53 rdf:rest N1f34fc182f7847de969347ed1512c6d7
54 Ne427a2dc8f014a97abce579f5e5b97c6 schema:name readcube_id
55 schema:value 6955829cce84bd5bca0737a91003a8c660db801cae88b0b8d77d4448962b22b4
56 rdf:type schema:PropertyValue
57 sg:journal.1120592 schema:issn 0095-4616
58 1432-0606
59 schema:name Applied Mathematics & Optimization
60 rdf:type schema:Periodical
61 sg:person.011034352655.74 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
62 schema:familyName Kallianpur
63 schema:givenName G.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034352655.74
65 rdf:type schema:Person
66 sg:person.01244410044.02 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
67 schema:familyName Wolpert
68 schema:givenName R.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244410044.02
70 rdf:type schema:Person
71 sg:pub.10.1007/978-3-642-46175-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183879
72 https://doi.org/10.1007/978-3-642-46175-0
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00337416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045821662
75 https://doi.org/10.1007/bf00337416
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01845839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035652530
78 https://doi.org/10.1007/bf01845839
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/cpa.3160120405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024459563
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/cpa.3160150203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004167092
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0022-5193(79)90174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005723174
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0047-259x(75)90054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022463469
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/s0001867800036004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018084192
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0021900200042121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014892947
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0027763000019231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039204274
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2307/1426683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069489680
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2307/3212499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226712
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2977/prims/1195188837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935351
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
101 schema:name University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...