Infinite dimensional stochastic differential equation models for spatially distributed neurons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-10

AUTHORS

G. Kallianpur, R. Wolpert

ABSTRACT

The membrane potential of spatially distributed neurons is modeled as a random field driven by a generalized Poisson process. Approximation to an Ornstein-Uhlenbeck type process is established in the sense of weak convergence of the induced measures in Skorokhod space.

PAGES

125-172

References to SciGraph publications

Journal

TITLE

Applied Mathematics & Optimization

ISSUE

1

VOLUME

12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01449039

DOI

http://dx.doi.org/10.1007/bf01449039

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022109358


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kallianpur", 
        "givenName": "G.", 
        "id": "sg:person.011034352655.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034352655.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolpert", 
        "givenName": "R.", 
        "id": "sg:person.01244410044.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244410044.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160150203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004167092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160150203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004167092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(79)90174-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005723174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200042121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014892947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800036004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(75)90054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022463469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024459563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160120405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024459563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46175-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183879", 
          "https://doi.org/10.1007/978-3-642-46175-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46175-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029183879", 
          "https://doi.org/10.1007/978-3-642-46175-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035652530", 
          "https://doi.org/10.1007/bf01845839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035652530", 
          "https://doi.org/10.1007/bf01845839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000019231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039204274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045821662", 
          "https://doi.org/10.1007/bf00337416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1426683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069489680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195188837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935351"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-10", 
    "datePublishedReg": "1984-10-01", 
    "description": "The membrane potential of spatially distributed neurons is modeled as a random field driven by a generalized Poisson process. Approximation to an Ornstein-Uhlenbeck type process is established in the sense of weak convergence of the induced measures in Skorokhod space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01449039", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Infinite dimensional stochastic differential equation models for spatially distributed neurons", 
    "pagination": "125-172", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6955829cce84bd5bca0737a91003a8c660db801cae88b0b8d77d4448962b22b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01449039"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022109358"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01449039", 
      "https://app.dimensions.ai/details/publication/pub.1022109358"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01449039"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01449039'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      20 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01449039 schema:author N52329d37009140f5972d30747eb1072d
2 schema:citation sg:pub.10.1007/978-3-642-46175-0
3 sg:pub.10.1007/bf00337416
4 sg:pub.10.1007/bf01845839
5 https://doi.org/10.1002/cpa.3160120405
6 https://doi.org/10.1002/cpa.3160150203
7 https://doi.org/10.1016/0022-5193(79)90174-7
8 https://doi.org/10.1016/0047-259x(75)90054-8
9 https://doi.org/10.1017/s0001867800036004
10 https://doi.org/10.1017/s0021900200042121
11 https://doi.org/10.1017/s0027763000019231
12 https://doi.org/10.2307/1426683
13 https://doi.org/10.2307/3212499
14 https://doi.org/10.2977/prims/1195188837
15 schema:datePublished 1984-10
16 schema:datePublishedReg 1984-10-01
17 schema:description The membrane potential of spatially distributed neurons is modeled as a random field driven by a generalized Poisson process. Approximation to an Ornstein-Uhlenbeck type process is established in the sense of weak convergence of the induced measures in Skorokhod space.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N173342114c11462f900f7c8d076cd65d
22 Na0de8523360f4ea69c479c0ae76c4204
23 sg:journal.1120592
24 schema:name Infinite dimensional stochastic differential equation models for spatially distributed neurons
25 schema:pagination 125-172
26 schema:productId N739131a6912f420a92bcf8339827109e
27 N77afde36124a40bd9ea5765cb48a670d
28 Nc671987fc6064ed798952b76d0bff523
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022109358
30 https://doi.org/10.1007/bf01449039
31 schema:sdDatePublished 2019-04-11T13:30
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nda413620edf94794b616ca6e69f478d8
34 schema:url http://link.springer.com/10.1007/BF01449039
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N173342114c11462f900f7c8d076cd65d schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N52329d37009140f5972d30747eb1072d rdf:first sg:person.011034352655.74
41 rdf:rest Ndfcd4cb6a7664a82979cc2ceb5a621ff
42 N739131a6912f420a92bcf8339827109e schema:name dimensions_id
43 schema:value pub.1022109358
44 rdf:type schema:PropertyValue
45 N77afde36124a40bd9ea5765cb48a670d schema:name readcube_id
46 schema:value 6955829cce84bd5bca0737a91003a8c660db801cae88b0b8d77d4448962b22b4
47 rdf:type schema:PropertyValue
48 Na0de8523360f4ea69c479c0ae76c4204 schema:volumeNumber 12
49 rdf:type schema:PublicationVolume
50 Nc671987fc6064ed798952b76d0bff523 schema:name doi
51 schema:value 10.1007/bf01449039
52 rdf:type schema:PropertyValue
53 Nda413620edf94794b616ca6e69f478d8 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Ndfcd4cb6a7664a82979cc2ceb5a621ff rdf:first sg:person.01244410044.02
56 rdf:rest rdf:nil
57 sg:journal.1120592 schema:issn 0095-4616
58 1432-0606
59 schema:name Applied Mathematics & Optimization
60 rdf:type schema:Periodical
61 sg:person.011034352655.74 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
62 schema:familyName Kallianpur
63 schema:givenName G.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034352655.74
65 rdf:type schema:Person
66 sg:person.01244410044.02 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
67 schema:familyName Wolpert
68 schema:givenName R.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244410044.02
70 rdf:type schema:Person
71 sg:pub.10.1007/978-3-642-46175-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029183879
72 https://doi.org/10.1007/978-3-642-46175-0
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00337416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045821662
75 https://doi.org/10.1007/bf00337416
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01845839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035652530
78 https://doi.org/10.1007/bf01845839
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/cpa.3160120405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024459563
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/cpa.3160150203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004167092
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0022-5193(79)90174-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005723174
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0047-259x(75)90054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022463469
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/s0001867800036004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018084192
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0021900200042121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014892947
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0027763000019231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039204274
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2307/1426683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069489680
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2307/3212499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226712
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2977/prims/1195188837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935351
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
101 schema:name University of North Carolina at Chapel Hill, Chapel Hill, 27514, NC, USA
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...